Aaron Stockdill

Research

I am interested in human-like reasoning and the “third wave” of artificial intelligence. Humans are capable of finding patterns in remarkably small datasets, learning from just a handful of examples. We use a wide variety of strategies to solve a wide variety of problems. Truly intelligent systems should be able to do likewise. Third-wave AI focuses on systems that can not just make predictions, but form explanations. This goes far beyond the first-wave (GOFAI, or good old fashioned AI) and second-wave (deep learning) AI. Furthermore, some speculate that third-wave AI might focus on teaching the AIs how to learn, or meta-learning.

Publications

Representational Interpretive Structure: Theory and Notation

P. C.‑H. Cheng, A. Stockdill, G. Garcia Garcia, D. Raggi, and M. Jamnik.
September 2022.
PDF, BibTeX, doi:10.1007/978-3-031-15146-0_4.

Examining Experts’ Recommendations of Representational Systems for Problem Solving

A. Stockdill, G. Stapleton, D. Raggi, M. Jamnik, G. Garcia Garcia, and P. C.‑H. Cheng.
September 2022.
PDF, BibTeX, doi:10.1109/VL/HCC53370.2022.9833141.

Considerations in Representation Selection for Problem Solving: a Review

A. Stockdill, D. Raggi, M. Jamnik, G. Garcia Garcia, and P. C.‑H. Cheng.
September 2021.
PDF, BibTeX, doi:10.1007/978-3-030-86062-2_4.

Cognitive Properties of Representations: A Framework

P. C.‑H. Cheng, G. Garcia Garcia, D. Raggi, A. Stockdill, and M. Jamnik.
September 2021.
PDF, BibTeX, doi:10.1007/978-3-030-86062-2_43.

Automating representation change across domains for reasoning

A. Stockdill.
September 2021.
PDF, BibTeX.

Correspondence-based analogies for choosing problem representations

A. Stockdill, D. Raggi, M. Jamnik, G. Garcia Garcia, H. E. Sutherland, P. C.‑H. Cheng, and A. Sarkar.
August 2020.
PDF, BibTeX, doi:10.1109/VL/HCC50065.2020.9127258.

Inspection and Selection of Representations

D. Raggi, A. Stockdill, M. Jamnik, G. Garcia Garcia, H. E. Sutherland, and P. C.‑H. Cheng.
July 2019.
PDF, BibTeX, doi:10.1007/978-3-030-23250-4_16.

Simulating neuromorphic reservoir computing: Abstract feed-forward hardware models

A. Stockdill and K. Neshatian.
December 2017.
PDF, BibTeX, doi:10.1109/IVCNZ.2017.8402482.

Restricted Echo State Networks

A. Stockdill and K. Neshatian.
December 2016.
PDF, BibTeX, doi:10.1007/978-3-319-50127-7_49.

Neuromorphic Computing with Reservoir Neural Networks on Memristive Hardware

A. Stockdill.
October 2016.
PDF, BibTeX.