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Abstract. Echo state networks are a powerful type of reservoir neural
network, but the reservoir is essentially unrestricted in its original formu-
lation. Motivated by limitations in neuromorphic hardware, we remove
combinations of the four sources of memory—leaking, loops, cycles, and
discrete time—to determine how these influence the suitability of the
reservoir. We show that loops and cycles can replicate each other, while
discrete time is a necessity. The potential limitation of energy conserva-
tion is equivalent to limiting the spectral radius.

1 Introduction

Feed-forward neural networks are limited to learning “pure” functions. This
excludes an entire class of problems which are time-dependent. Extending neural
networks to handle this involves adding recurrency, and thus we have recurrent
neural networks. These networks are capable of holding state, but it comes at the
cost of them being difficult to train. Approaches to managing this complexity
vary from unfolding the network sufficiently many steps to create a feed-forward
network so that back-propagation can be used (this is called back-propagation
through time [6]), or more advanced methods such as Kalman filtering [7].

A type of recurrent neural network is the reservoir neural network is becom-
ing a common approach to learning. They are simple and fast to train, and as
capable as other approaches [2]. A prominent model of reservoir neural network
is the echo state network (ESN) described by Jaeger in 2001 [3]. Jaeger defines
the ESN by a reservoir of neurons connected by synapses with weights that re-
main unaltered, in contrast to trained artificial neural networks, and restricts all
the learning to a readout layer. Section 2 provides a description of ESNs.

An important component of a reservoir neural network is the eponymous
reservoir. In the original definition, there are no restrictions on how the neurons
connect—neurons can connect to any other, including themselves, and may form
cycles. This gives the network powerful memory abilities, to the point that the
past inputs entirely define the current state, after sufficient inputs. This is the
echo property in ESNs. Because the structure of the reservoir has a strong influ-
ence on the expressive power of the ESN, this paper explores the effect of making
structural changes: removing loops (wherein a neuron can output directly back
into itself), cycles (as a sequence of nodes such that the output of a node eventu-
ally becomes input to itself), and the discrete time steps, and forcing a reservoir
to be “conservative”, where the outgoing weights for each neuron sum to one.



Although software allows arbitrary reservoirs, this is not the case in hard-
ware. Thus this work aims to detail how the structure of a reservoir can impact
on learning potential, and thus inform and guide neuromorphic hardware devel-
opment. Work from Sillin et al. and other researchers has shown great potential
for reservoir-style machine learning on novel hardware [5]. Because physical laws
govern the structure of the network when it must exist in a physical system,
these restrictions we impose become relevant—even when they are not a prob-
lem encountered in a purely software environment.

2 Echo State Networks

An echo state network (ESN) is a recurrent neural network first described by
Jaeger in 2001 [3] that uses a reservoir of neurons that do not need training.
Instead, the training happens in a readout layer. A more complete summary of
ESNs is available from Lukoševičius [4], but can be fully defined by

y(t) = Wout[1;u(t);x(t)]

x(t) = (1− α)× x(t− 1) + α× tanh
(
Win[1;u(t)] + Wx(t− 1)

)
.

(1)

The readout layer Wout is the map from the input vectors u(t) to the out-
put vectors y(t), based on the internal state of the network x(t). The operator
[·; ·] denotes vertical vector concatenation. The constant α is the leaking rate,
referring to the mixing between current and previous output.

The ESN’s readout layer is typically trained using a linear model, leading
to a simpler recurrent neural network than otherwise possible with techniques
such as back-propagation through time, or extended Kalman filters. The ESN
also retains all the expressiveness in the recurrent neural network, performing
comparably to these other training methods [2]. The linear model is for the ESN
author to choose, but a common and recommended choice we use here is ridge
regression [4]. Thus our learning is solving the matrix equation

Wout = YtargetX>
(
XX> + βI

)−1
. (2)

The matrix Y is the sequence of input vectors arranged horizontally, while the
matrix X is the sequence of [1;u(t);x(t)] vectors arranged horizontally.

The reservoir used by an ESN is the source of, and restriction on, its mem-
ory capacity. Normally, the only restriction placed on an ESN is the spectral
radius, a measure of scaling performed by the reservoir. If the input could po-
tentially contain a zero vector, then the spectral radius must be less than one [4].
Sometimes, the sparsity of the reservoir is also restricted, but this is for perfor-
mance reasons. By placing further restrictions, we can reduce the ‘power’ of
the ESN. Čerňanský and Makula demonstrated this in their work exploring the
feed-forward ESN [1]. By removing both cycles and loops in the reservoir, they
show an ESN becomes equivalent to a feed-forward neural network with inputs
representing up to n steps back in the input history, where n is the number of
neurons in the reservoir.



3 Exploring Reservoir Variations

We have identified four sources of memory in an ESN: leaking, cycles, loops, and
the discrete time steps. Because leaking is inherently ‘outside’ the reservoir, this
is a simple addition to any network. Any state read from the network can be
stored to mix in with the next state before being sent to the readout layer. Thus
we will not consider leaking any further.

Cycles are when there is a sequence of neurons n1n2 . . . nkn1n2 . . .. Loops are
an edge that connects neuron ni back to itself. The discrete time steps are when
the state of a neuron at time t receives information from its neighbours from
time t− 1. This final property works in tandem with the first two to exploit the
state of the network and provide the memory so vital in its power.

By removing these features, and combinations thereof, we potentially weaken
the ESN, but in doing so make it more closely resemble the hardware implemen-
tations available. Two distinctions remain between the “fully-weakened” ESN
and a hardware network. First, the hardware network is updating the connec-
tion weights while the network is running. Modern neuromorphic hardware is
not composed of static resistors, but often some variation of memristive hard-
ware, which has a dynamic resistance depending on the history of voltage or
current. To explore the effect this might have, we introduce a wobbling weights
matrix, which changes its weights based on the previous input across it, much
like memristors. Second, the software reservoir is able to amplify and suppress
energy arbitrarily, whereas hardware must conserve electricity. To remove this,
we force the output weights of each neuron to sum to one.

3.1 Loops

Loops are a source of memory for the network. Because the neuron now has
explicit access to its own state at time t − 1, it creates a type of weighted
average, effectively giving each neuron total memory of past inputs. Cycles give
the same effect, but the tighter effect of the loop is more easily emulated in
hardware solutions by sensors and external voltage sources.

As shown by Čerňanský and Makula, removing both cycles and loops reduces
an ESN to a feed-forward network with delayed-time inputs [1]. The memory of
the network is limited by the longest chain. The network was still capable of
solving the typical sorts of problems such as Mackey-Glass because the memory
requirement is by convention set at 17 steps, and the reservoirs are trivially made
larger than this. Removing just one of loops or cycles will not cause the same
reduction in expressive power for temporal datasets. By removing only loops and
not cycles, there is no immediate loss of power—any memory a loop supported
is replicated with a cycle, but with a k-step delay, where k is the length of the
shortest cycle through a neuron. Thus learning may slow, but not stop.

Consider a simple network of two neurons connected by a directed edge in
both directions. If no loops are available, it is not immediately possible to mix
the input to neuron i at time t, denoted ui(t), with ui(t − 1). But we can mix
ui(t) with ui(t − 2). Thus the length of the cycle through neuron i is two, so



there is a two-step delay in the network. In the meantime, neuron j is mixing
ui(t − 1), ui(t − 3), . . .. The readout layer can mix both streams, thus mixing
ui(t) for all t. This scales appropriately for cycles of length k.

3.2 Cycles

Cycles provide the network with ‘infinite’ memory. Removing cycles is an impor-
tant research question, because hardware implementations are unable to recre-
ate cycles. Kirchhoff’s Voltage Law limits the amount of energy in a circuit, and
forces conservation. That is, a junction is unable to amplify a signal, and so there
cannot be cycles in the network. Having cycles would imply an infinite sequence
of groups where the potential difference drops forever, leading to an impossible
infinitely-descending structure:

V1 > V2 > · · · > Vk > V1 > · · · =⇒ V1 > V1  (3)

If cycles were to form, energy would cycle forever and become infinite, something
not possible in a physical circuit.

Now, having removed cycles, infinite mixing of inputs is not available to every
neuron, but infinite mixing of input at neuron n for input to neurons m < n
is available because we have not yet excluded loops. By modifying input to be
repeated (i.e. u(t) 7→ [u(t);u(t)]), the inputs to neurons m < n are also available
at neurons o > n. Thus having loops can be made equivalent to having cycles,
although particular mixes may not be available within the same number of time
steps. This is important as a device which mixes the previous voltage across a
memristor with the present voltage is conceivable.

As an illustrative example, consider a network that once contained the cycle
of two neurons m and n such that m→ n→ m. Normally we could infinitely mix
um(t) with un(t−2k−1) and um(t−2k) for any natural number k, and vice versa,
by allowing the inputs to cycle around each other. By removing cycles, such a
structure is unavailable. Instead, we can simulate it with m → n → m′ → n′

such that um(t) = um′(t) and un(t) = un′(t), and every neuron also loops back
into itself. It is now possible to mix um(t) with un(t − k) and um(t − k − 1)
for any natural number k, as it now occurs further back in the network, and
the cycle acts as an infinite internal delay mechanism for the input. This is a
stronger guarantee than necessary, but does ensure the desired effect of cycles.

3.3 Conservation of Energy

The restriction of conservation of energy is not a restriction at all. It limits a
network in the same manner as the spectral radius, the spectral radius being the
largest absolute eigenvalue of the weights matrix. By ensuring that a neuron’s
outputs sum to one, we have effectively forced each column in the weights matrix
to sum to one. The eigenvalues of matrix W are the same for W>, so we can
consider the matrix W> with row sums equal to 1. For some v, we have

W>v = (w>1 v,w
>
2 v, . . .)

> = (w1 · v,w2 · v, . . .)> (4)



Algorithm 1 Propagate the input u(t) over the reservoir defined by W

1: procedure Propagate(W, Win,u(t))
2: v←Winu(t)
3: o← (0, 0, . . . , 0)>

4: for all n ∈ toposort(W) do
5: s← vn
6: for all m ∈ predecessors(n) do . finds all nodes with edges into n
7: s← s + omWn,m . Wn,m is the weight from m to n
8: end for
9: on ← tanh(s)

10: end for
11: return o
12: end procedure

Given that wi · v = ‖wi‖‖v‖ cos θ, ‖wi‖ ≤ 1, and −1 ≤ cos θ ≤ 1, the largest
absolute scaling possible by W> (and thus also by W) is 1. Hence conservation
of energy is equivalent to specifying a spectral radius of at most one. This is not
an issue: ESNs are only guaranteed to work for spectral radii below one [3].

3.4 Discrete time steps

The discrete time nature of an ESN is the fundamental feature of its memory.
This is also a difficult feature to replicate in hardware. Because a circuit will
have the electricity pass through at significant fractions of the speed of light, no
matter how rapidly we switch the input voltage, we are essentially saturating
the network with the same signal millions of times before switching. Because of
this speed disparity, a hardware network will essentially not contain discrete time
steps, instead it will function more like a traditional feed-forward neural network,
which we will call the one-hop reservoir, where the input u(t) is influencing the
entire network at time t, but inputs u(s) from times s < t are not in the network.
The difference is now, there is no new information written to the network before
the propagation is complete. Because of this distinct termination, the network
is not allowed to have cycles or loops. Algorithm 1 outlines the propagation.

Because there is now no state in the network beyond the leaking rate, the
network will be unable to learn any function requiring knowledge of previous time
steps. Essentially, we remove the echo property. The state now depends solely on
the random initial weights, not the history of previous inputs as required by an
ESN. This network is now an untrained feed-forward neural network. Hence this
reservoir is incapable of learning any of the time-series problems it was designed
to solve. While there are potential applications for traditional machine learning,
by training an equivalent neural network in software and ‘burning in’ the weights
to hardware, this is not a suitable use for memristors—they will update their
weight, and move away from their desired weight.

This comparison is not fair, because a network of memristors does maintain
a state, because the weights do get updated. The question then becomes does



the memristor’s state act as a suitable substitute for the ESN’s discrete time
steps? The answer would seem to be no. By making the ESN have a ‘wobbling’
weights matrix to simulate the updating conductances of the memristors and
switches, we handicap the readout layer by removing the underlying assumption
of regression—for a given input x, there is a function f(x) that we attempt to
find. Because f is a function, each x uniquely maps to some y. By changing the
weights matrix, we change the function we are trying to fit, and so prevent the
linear regression from successfully fitting the training data.

4 Conclusion

We have presented four important sources of memory in an ESN: leaking, loops,
cycles, and discrete time. While removing both loops and cycles is known to un-
dermine the infinite memory capability in a reservoir, removing just one leaves
the reservoir sufficiently powerful for all learning, assuming some modifications
to inputs. The single most important feature of a reservoir neural network is the
discrete time step nature of input propagation. Should this be unavailable, as
is likely in hardware implementations, the reservoir will cease to function as an
effective learner. The potential for self-updating hardware such as memristors
does not provide the necessary memory to overcome the lack of discrete time
propagation. A primary concern in hardware implementations of reservoir neu-
ral networks is the strict requirement of energy conservation. However we have
shown this to be no more severe than spectral radius scaling.

References
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