Neuromorphic Computing with
Reservoir Neural Networks on
Memristive Hardware

COSC460 Research Project

Aaron Stockdill
68299033
aas7b@uclive.ac.nz

Under the supervision of
Dr Kourosh Neshatian
kourosh.neshatian@canterbury.ac.nz

Department of Computer Science and Software Engineering
University of Canterbury
Christchurch, New Zealand
14 October 2016

mailto:aas75@uclive.ac.nz
mailto:kourosh.neshatian@canterbury.ac.nz

Abstract

Building an artificial brain is a goal as old as computer science. Neuromorphic computing
takes this in new directions by attempting to physically simulate the human brain. In 2008
this goal received renewed interest due to the memristor, a resistor that has state, and again in
2012 with the atomic switch, a related circuit component. This report details the construction
of a simulator for large networks of these devices, including the underlying assumptions and
how we model specific physical characteristics. Existing simulations of neuromorphic hard-
ware range from detailed particle-level simulations through to high-level graph-theoretic rep-
resentations. We develop a simulator that sits in the middle, successfully removing expensive
and unnecessary operations from particle simulators while remaining more device-accurate
than a wholly abstract representation. We achieve this with a statistical approach, describ-
ing distributions from which we draw the ideal values based on a small set of parameters.
This report also explores the applications of these memristive networks in machine learning
using reservoir neural networks, and their performance in comparison to existing techniques
such as echo state networks (ESNs). Neither the memristor nor atomic switch networks are
capable of learning time-series sequences, and the underlying cause is found to be restrictions
imposed by physical laws upon circuits. We present a series of restrictions upon an ESN,
systematically removing loops, cycles, discrete time, and combinations of these three factors.
From this we conclude that removing loops and cycles breaks the “infinite memory” of an
ESN, and removing all three renders the reservoir totally incapable of learning.

Contents

[Abstract]

Contents

[List of Symbols and Notation|

2 Background & Literature Review|
2.1 Machine learning|o L
2.2 Reservoir neural networksl Lo

[2.3 Neuromorphic computing| o

4.2 Readout weights|
4.3 Testing and configuration| 0oL

[6 Comparisons and Results|
5.1 Replication|

B3 MOMOTY] - « « o o e e e

SO Ot

28
28
30
31

34
34
36
38
42

45
45
46
47

47

51

List of Symbols and Notation

General Mathematical Notation
o Function composition, e.g. f(g(x)) = (f o g)(z).
4 Contradiction.

Fv Filter (or operator) application. Filter F' maps function v between vector spaces.

Machine Learning Constants and Operations
act(c) The set of instances of a training set that truly belong to class c.
u(t) The input vector at time ¢.
N () The neighbours of a vertex in a graph (or graph-like structure).
y(t) The output vector at time ¢.
pred(c) The set of instances of a training set that are predicted to belong to class c.
7 The number of training instances, or the Mackey-Glass “difficulty” parameter.
W Matrix of weights connecting neurons, where w;; connects neuron j to i.

x(t) A vector representing the reservoir state at time t.

Neuromorphic Constants and Operations
a, B, ... Greek letters represent physical constants/properties.
G Conductance, the inverse of resistance.
Z The set of input groups.
¢ The length across a gap between groups, measured in particle diameters.
O The set of output groups.
p The coverage proportion of the board.
pe Percolation threshold, the coverage proportion of the board before “short-circuiting.”

Vr, I Threshold voltage and current, respectively.

Vectors and Vector Operations
A,B,C... Uppercase bold-face latin letters represent matrices.
a,b,c... Lowercase bold-face latin letters represent vectors.

|| The dimension(s) of a vector or matrix. For example, if x € R3, then |x| = 3. Also
absolute value of scalars, and the cardinality of a set.

tanh(-) Hyperbolic tangent, applied element-wise.
[;:] Vertical concatenation of vectors.

Il The Euclidean norm of a vector. What is commonly considered the length.

Introduction

“The scientist is not a person who gives the right
answers, he’s one who asks the right questions.”
— Claude Lévi-Strauss

Modern computing is increasingly turning to artificial intelligence and machine learning to
accomplish the evermore ambitious goals set before it. To build a machine that can attain
the “gold-standard” of learning—that is, to match a human brain—is the ultimate goal of
researchers around the world. A human brain is able to perform better than modern com-
puters at deceptively “simple” tasks such as object recognition, while using in the order of
a millionth of the power: hence the allure of machines that can match it. Recent advances
in neuromorphic computing have meant renewed interest in the hopes of building such a
machine [27].

Neuromorphic computing is a cross-disciplinary field incorporating researchers from Com-
puter Science, Physics, Mathematics, and Statistics, all working together to build what they
hope will be a machine capable of matching a human brain. In this report we focus our
attention on the recent development of memristive hardware, using novel fundamental circuit
components to construct “intelligent hardware”.

Memristors, and their close cousins atomic switches, are both varieties of memristive
hardware—that is, hardware which changes itself based on its own past. This ability to
remember could help unlock new advances in machine learning, by moving the learning into
the hardware. Because they are so new, a significant amount of research is needed before the
utility of memristive hardware becomes clear.

In this research, we explore the learning potential of proposed homogeneous memristive
hardware. We build upon a model of learning called reservoir neural networks, and explore the
kinds of problems that memristive hardware acting as a reservoir will be able to solve. As will
become clear, we also discuss the physical limitations of such hardware, and what it means
to attempt to apply machine learning techniques to physical hardware. Some consideration
of how to overcome these issues, as well as the next steps in research, are also presented.

1.1 Motivation

The Nanotechnology Research Group at the University of Canterbury Physics and Astronomy
Department have been working on constructing a network of atomic switches, a type of
memristive circuit component. Their work is reaching the point that hardware has now been
produced, and initial understanding of the dynamics of these components is available.

Much has been written about the potential of memristive hardware in machine learning
contexts, but the work to date has been done in a large part by physicists. This leaves open a

chance for an in depth discussion of how machine learning can be mixed with novel hardware
environments, and how the features of the hardware impact on learning. In particular, the
exact features of this hardware are still unknown. Because the hardware is so different to the
computing hardware we are familiar with, the types of behaviour we might see are uncertain.
A large portion of the existing literature focuses on the memristor, but less work has been
done on the atomic switch. Because this is the hardware that the University of Canterbury
is invested in, understanding how the memristor and atomic switch differ can direct future
work, and inform how existing literature can be understood in terms of atomic switches.

1.2 Goals

The goals of this research project are threefold: first, simulate large networks of memristive
devices efficiently and rapidly; second, incorporate these networks of memristive devices into
reservoir learning methods and demonstrate their learning potential; and third, compare how
memristors and atomic switches relate to each other and traditional reservoir neural networks
in respect to reservoir learning. A subsequent goal emerged during the project, which was
to determine which features of reservoir neural networks were most important in learning,
particularly in learning temporal data sets.

When this work started, there was an understanding that physical hardware would be
available for experimentation. This would mean we would be able to provide the first in depth
understanding of memristive hardware outside of simulations. However, early discussions
revealed that the atomic switches as they currently stand are not suitable for use in machine
learning tasks. The combination of long write times and inconvenient environment make
them slow and inaccessible, and so we abandoned the goal of implementing reservoir learning
on physical hardware for practical reasons.

1.3 Organisation

This report opens with a brief summary of the background material required for the content
discussed in later chapters. We also provide a brief overview of existing work in the field of
neuromorphic computing with memristive hardware, and the work that inspired this project,
covered in Chapter 2] The novel contributions from this project are presented in Chap-
ters 3} [and [f] Chapter [3] covers simulating the memristive and atomic switch hardware,
while Chapter [] focusses on applying reservoir neural network machine learning techniques
to the simulations. Chapter [5| presents the capabilities of homogeneous memristive hardware
in a reservoir paradigm. The underlying causes are discussed, and the implications of these
results explored. We conclude this report with Chapter [6] in which we present a summary
of the research, the limitations of the work, and the future research avenues and questions
raised by this project.

Background & Literature Review

“If I have seen further it is by standing
on the shoulders of giants.”
— Sir Isaac Newton

This interdisciplinary project draws on machine learning, mathematics, statistics, and physics.
Because of the broad scope and significant background knowledge required, this section pro-
vides a brief overview of each of the key concepts, followed by a summary of the directly
related literature. The background work occurred over the course of decades, with each field
working in parallel, often independently and sometimes influencing each other. The presen-
tation of information here is in order of concept progression, but the interconnected nature
means a full understanding may require repeated readings.

2.1 Machine learning

Since the invention of computers, there has been a desire to make them think like a person. In
1956, John McCarthy introduced the term artificial intelligence to the world, and proposed
a two-month workshop to build an intelligent machine [32, Section 1.3.2]. Sixty years later,
we are not a lot closer to that original goal—but in those sixty years, we have achieved
the incredible: self-driving cars, grandmaster Chess and Go players, and countless other
significant achievements.

Machine learning is an area that has significant overlap with artificial intelligence. Re-
sponsible for a significant portion of the results listed above, machine learning has its roots
in mathematics and statistics [3]. This rigorous approach to intelligence has led to a change
in expectations—the desire to build a thinking, “aware” intelligence has diminished (although
certainly has not disappeared [12]), and a new goal has come to the fore, the goal of building
a machine capable of identifying patterns and learning from datasets.

One prominent machine learning technique of the past decade is the neural network. The
neural network is conceptually simple: the best model for intelligence we have is a human
brain; the human brain is a network of neurons; ergo, to build an intelligent machine we should
build a network of neurons. The simplest network consists of a single neuron, providing a
starting point for significant future research.

The perceptron was an early model of learning, modelling a single neuron that took
some inputs, and produced an output signal in response [3| Section 4.1.7]. Equation ([2.1)
summarises their function, wherein ¢(-) is a fixed transformation from an input x into a
feature vector ¢(x), f(-) is the activation function frequently defined as in Equation (2.2),
and w is a vector of weights that is updated according to some function, often some variety

(a) The “and” problem, 21 Az, with one (b) The “xor” problem, x; @ x2, which
possible solution illustrated. is mot linearly separable.

Figure 2.1: Two decision problems with the same concept: given inputs x; and xs,
classify it as either true (noughts) or false (crosses). No straight line will split the
noughts and crosses in (b).

of gradient descent.

y(x) = f(w'(x)) (2.1)
+1 ifa>0
J(a) = {—1 otherwise (22)

These single perceptrons were effective learners, and were simple enough to train using gra-
dient descent. Perceptrons had important limitations—they were found to be equivalent to
a linear classifier, and thus limited to finding a linear decision boundary. Figure 2.1 shows
an example of linear and nonlinear decision boundaries.

To overcome this linear boundary limitation of perceptrons, the first neural networks were
developed—the multilayer perceptron. This involved stacking sets of perceptrons upon one
another, feeding the outputs of the previous layer as inputs into the next. The activation
function f is abandoned for a new continuous (and hence differentiable) function, often either

tanh or the sigmoid function,
1
) =T

In such a way, the first neural networks were constructed, and are today referred to as feed-
forward neural networks. Feed-forward neural networks are capable of learning nonlinear
decision boundaries, and are relatively easy to train. The back-propagation algorithm, based

around Equation (2.4)), is able to update the internal weights of the network similarly to how
gradient descent will update the weights of a single perceptron [32], Section 18.7.4].

(2.3)

Wij = Wi + a X a; X Aj (2.4)
P — a; if 7 is an output neuron
Ai = U/(ini) X (yl Z) i p (2.5)
>_jwiAj otherwise
€T; if 7 is an input neuron
a;=1{" J 15 Al np (2.6)
o(>°; wija;) otherwise

The variable w;; represents the weight of the connection between neuron 7 and neuron j, a;
represents the output of neuron i, « is the learning rate of the network, and x; and y; are
elements of the input and output vectors, respectively.

Despite resolving the issue of the nonlinear decision boundary, feed-forward neural net-
works were not a panacea. As the neural network showed its power, with more and more
expected of it, we encountered a significant downside. Feed-forward neural networks are able
to learn mathematically pure functions, but cannot learn temporal functions—that is, func-
tions that have hidden dependencies on time and state. Although this can be worked around
by encoding the time or state into the input, it becomes difficult as the domain becomes
complex.

The solution is to remove the feed-forward restriction, and hence allow cycles to occur in
the network. This enables information to loop within the network, meaning that there is now
an implicitly encoded state. The network is now able to produce output based on both the
current input and on a knowledge of past inputs. The cost of this power is training—back-
propagation by itself is no longer a viable training method, because the local minima for a
certain input move over time.

There are three main recurrent neural network training algorithms, the most common
being back-propagation through time. This method involves “unfolding” the network through
time by taking the output of the network at time ¢, and combining it with the input for time
t 4+ 1. This creates large networks that are difficult to train, and is much more susceptible
to local minima traps [24]. A similar method is real-time recurrent learning, which functions
much like traditional back-propagation, but estimates the gradient because of the difficulty
of calculating it [6]. Perhaps the most successfully applied training method is the extended
Kalman filter. The extended Kalman filter performs linearisation around the working point,
and then applies a regular Kalman filter. A regular Kalman filter works by mapping not
points, but entire distributions, and so is more tolerant to variation in the data [6]. Lastly
there is the reservoir neural network.

2.2 Reservoir neural networks

A reservoir neural network builds on the concept of a recurrent neural network, similarly
allowing cycles in the neurons, encoding state in the network itself. One significant difference
is that the weights of the connections are no longer updated. The weights are static, and
instead the training occurs in a readout layer. By moving the training out of the reservoir, the
highly interconnected structure can be as complex as desired, without making the training
more difficult. This has the added benefit of making a significantly larger neural network,
now called a reservoir, computationally viable to work with.

The first kind of reservoir neural network developed by [Jaeger| in 2001] is the echo state
network (ESN) [16]. The learner is composed of three pieces, each represented by a matrix:
an input layer W™ mapping from the input to the neurons in the reservoir, with a bias; the
reservoir W consisting of an arbitrarily connected set of neurons, which are allowed to form
cycles and loop back on themselves; and a readout layer W°" which takes the input and the
state of all the neurons, and learns a mapping to the expected output [16]. This structure is
visible in Figure The full formal definition is

y(t) = WL u(t); x(1)]
x(t) = (1 —a)x(t—1) 4+ ax(t) (2.7)
%(t) = tanh (W™[1;u(t)] + Wx(t — 1)) .

Inputs Reservior Outputs

Win W W()m

Figure 2.2: A diagram of how an ESN is laid out, with the input, reservoir, and
readout layers. The matrix labels are in reference to the arrows.

The operator [-;] is a vertical concatenation of vectors. The vector u(t) is the input and x(t)
is the internal state of the reservoir at time ¢. y(t) is the output from the reservoir at time ¢.
The parameter « is the leaking rate, determining the mix of old and new information in the
network. The hyperbolic tangent tanh(-) is applied element-wise.

A defining feature of the ESN is the echo property [16]. This property guarantees that
the current output is dependent on the history of inputs, and for a long enough history of
inputs, the current state is unique. That is, the current state is a pure injective function F
on all previous inputs:

x(t) =E(...,u(t—1),u(t)). (2.8)

This is because the network acts as a kind of fading memory, basing the output on all infor-
mation but giving most weight to recent inputs. There is no easy way to determine whether
an arbitrary network satisfies the echo property: certain known conditions are sufficient but
not necessary—notably that the spectral radius, the maximum absolute eigenvalue, is less
than one.

The readout layer does all the learning, trained through any least-squares matrix solution.
In this project, we will use ridge regression, also called Tikhonov regularisation [24], defined
as

—1
wout — ytargery T (XXT + BI) . (2.9)

The regularisation constant 3 is used to penalise large W°U. There are an infinitude of
different parameters to tune for individual problems, but in general the key parameters are
the leaking rate, the spectral radius of W, and input scaling from W,

Although they have a seemingly complicated definition, ESNs are simpler to program and
faster to train than traditional recurrent neural networks. Surprisingly, and pleasingly, ESNs
are no less powerful than the other recurrent neural network training techniques [7]. Thus
the improvements in training time come at no cost of learning potential, and so make a solid
starting point for this research project.

ESNs are powerful learning systems, but remove most restrictions upon the reservoir
design. This means they can be arbitrarily complex, and while their simple training usually
does not make this a problem, they can suffer from having a lot of hyperparameters to tune.
To combat this, [Cerfiansky and Tifo| proposed a restricted form of ESN called the feed-
forward ESN [6]. The feed-forward ESN resembles a regular ESN, except a restriction is
placed on connections in the reservoir. For a reservoir with n neurons, there must be a single

10

chain of length n containing every neuron, there must be no cycles, and for some numbering
of neurons 1...n neuron ¢ may connect only to neurons j > 1.

A feed-forward ESN is not, in the traditional sense, feed-forward. This is because at time
t a neuron is still aware of the input at time ¢t —1 by connections from previous neurons. Thus
the network still has a state, which a true feed-forward neural network does not. But the
memory encoded in the network no longer extends back to the beginning of input, and is now
limited to at most n steps back in time [6]. Because of this, the network is now equivalent to
a feed-forward neural network with explicit memory input for the past n steps.

Equivalent to the ESN is the liquid state machine (LSM). The LSM was originally defined
by [Maass et al.|in 2002 in terms of an input filter—a liquid which holds the state driven by
the previous inputs—and an output layer [25]. Although not necessarily implemented using
neural networks, Maass et al. provided a realisation of the liquid using integrate-and-fire (or
spiking) neurons.

The LSM is attractive because it has “universal computational power for time-varying
inputs” [25]. However, to achieve this result, LSMs place some strict demands on the in-
put filters (a separation property, see definition and readout layer (an approximation
property, see definition , making their real-world generality harder to guarantee. For this
reason, the LSM was not chosen as the basis of the learning algorithm for this project. Work
that does so would be a useful extension on this project, to see if working from the reference
point of the LSM model produces different results.

Definition 2.1 (Separation property [25])

A class CB of filters has the point-wise separation property with regards to input
functions from U™ if, for any two functions u(-),v(-) € U™, such that for some s <0
we have u(s) # v(s), then there exists some B € CB that separates u(-) and v(-),
that is (Bu)(0) # (Bv)(0).

Definition 2.2 (Approximation property [25])

A class CF of functions has the approximation property if, for any m € N, any closed
and bounded (i.e. compact) set X C R™, any continuous function h : X — R, and
any given p > 0 then there exists some f € CF such that |h(z) — f(z)| < p for all
x € X. Multidimensional outputs are defined similarly.

2.3 Neuromorphic computing

In[1989] Mead| coined the term neuromorphic computing to mean software and hardware that
behave like a biological neural network—Ilike a brain [26]. The reason for this is clear: the
human brain is the gold standard of intelligence. There is no other system like it that is as
capable of massive, parallel computation of tasks that currently seem computationally im-
possible. And the human brain does all this with just tens of watts of power. A comparable
computer today needs tens of gigawatts [35]. At a glance this would make neuromorphic com-
puting a subfield of artificial intelligence, but the broad scope of these brain-making projects
ensure it is a field of its own, drawing researchers from computer science and engineering,
mathematics and statistics, and psychology and neurology.

In present computers, we use what is known as the von Newmann architecture. This
model of computers separates the processing hardware (i.e. the CPU) from the memory
hardware (i.e. RAM and disk), in much the same way that a Turing machine separates the
logic inside the state machine from the input, output, and memory contained in the tape.
Neuromorphic computing breaks down this distinction, and instead blends together the two
concepts, maintaining state (or memory) within the processing units [I3]. This removes the

11

1l

Memristor

Figure 2.3: The fundamental circuit components linking the four properties of an
electrical circuit. The memristor provides the link between charge and flux.

bottleneck seen today in computer systems, when data must be shunted to and from memory,
or even worse from disk.

In an attempt to reach the power efficiency of the human brain, hardware implementations
of neural networks became popular. The approaches are varied, ranging from the spiking
neural network architecture (SpiNNaker) project from the University of Manchester [10],
which uses thousands of processing cores, each of which models thousands of neurons, through
to the TrueNorth chip from IBM [I], which abandons what is currently considered a “computer
chip” by combining millions of transistors into neurosynaptic cores. Both of these projects
arrange existing hardware in novel ways in an attempt to create the massive interconnected
network found in a brain.

The difficulty with this approach is that existing hardware does not closely resemble cells
we find in a brain. Brain cells are self-updating, contain their own state, and generally
use energy only when firing. As such, attention is turning away from current hardware
components, and instead towards new types of hardware that resemble brain cells. This
hardware must be small enough to pack densely, cheap enough to make millions, and consist of
these updating, power-efficient characteristics sought-after by neuromorphic engineers. Some
research has been directed into custom silicon solutions [14], but more interesting is the goal
to use fundamental circuit components. Two candidates have appeared: the memristor, and
the atomic switch.

2.4 Memristors and atomic switches

Electrical circuits traditionally consist of three fundamental components: resistors, capacitors
and inductors. These components create relationships between current, voltage, charge, and
flux. Charge is the integral of current through time, and flux is the integral of voltage through
time. Thus four relationships are possible, avoiding relating current with charge and voltage
with flux. The final, previously missing link between charge and flux is filled by a component
known as the memristor, first theorised in 1971 by |Chua/ [§]. Figure illustrates these
relationships. In May 2008, [Strukov et al.| discovered the first memristors forming naturally
at nanometre scales [41].

The family of memristors is defined by a relationship between voltage and current with a
function R(-,-), shown in Equation , which is in turn specified by a differential equation,

12

Equation (2.11)) [41].

V =R(zI)-I (2.10)
dx
i f(z, 1) (2.11)

The function f(-,-) is device-specific, and left undefined. The variable z is a state variable,
used as a mathematical analogy of the physical changes within the device. This set of

equations defines a charge-controlled memristor, but an alternative definition is called a fluz-
controlled memristor, which is specified by analogous Equations (2.12) and (2.13).

I=G(x, V)V (2.12)
dx
o =@V (2.13)

As before, x and f(-,-) are left unspecified, and are device specific. Because conductance
G = 1/R is a more convenient definition in the context of this project, we will be working
with the flux-controlled memristor definition.

The given definitions are suitable for a class of devices, allowing for different possible
realisations of a memristor. For the purposes of this project, any reference to a memristor
should be considered as a reference to the standard memristor [19]. The function definition
of a standard memristor is

dx 1

= =BV +S(a=B)(IV + Vr| = [V = V). (2.14)
It makes the simplifying assumption that the state variable x is the present conductance G.
The constants «, [, and Vp are specific to a device, with Vp as the threshold voltage. This
threshold voltage is the point at which a memristor changes from low conductance to high
conductance. When simulating a specific device, these constants are determined empirically.
The standard memristor is not the only possible model, with improvements given by |Querlioz
et al.| towards modelling specific devices [30]. Because this project does not target memristors
directly, We use the standard memristor, it being a simpler and more general model.

In contrast to the memristors defined above, there exists a model called an atomic
switch [34], which will also react to voltage and current, but does so differently, switch-
ing between a high- and low-conductance state with negligible intermediate transition. The
definition of atomic switches is

Gmax if V(t) > Vp and I(t) < Ir

_ (2.15)
Gmin oOtherwise.

G(m):{

As before, Vr is a voltage threshold, and now there exists a current threshold current Ir.
Such a current threshold is not strictly necessary, but was shown by |[Fostner and Brown
to add variability, which may be useful for learning [9]. It represents the current at which
a switch breaks. The constant Gpax is the “on” state of the switch, and similarly G, is
the “off” state of the switch. The on state is typically set as a constant value, while the
off state conductance for switch ¢ is based on the size of the switch ¢; using the relation in
Equation [A].

Gumin(l;) = ae™ P (2.16)

The constants « and § are device-specific, similarly to their counterparts in the memristor
definition, Equation ([2.14)). Atomic switch networks have the advantage of being much easier

13

0.0010F T T T T] T T T T T 10
0.10

0.0005 |] sl
0.05F

0.0000

1 0.00 r

—0.0005 | 1 —0.05 51
—0.10}

—0.0010 |)) E —~10}

L L L L L L L L]
-1.0 -0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
Voltage V Voltage V' Voltage V

Current /

Current [

Current /
o

(a) Resistor (b) Memristor (c) Atomic Switch

Figure 2.4: The current-voltage curves of three circuit components.

to produce than memristor networks. This makes them attractive for possible applications,
as they can make potentially large networks quickly and cheaply.

The behaviour of circuit components can be compared using a diagram called a current-
voltage plot (abbreviated I-V). Figure shows this plot for a resistor, a memristor and
an atomic switch. A resistor, Figure presents a line segment, illustrating the linear
relationship. The characteristic curve of a memristor is the pinched hysteresis, Figure
a curve which displays a memory of past inputs by the change in gradient. A switch creates
an [-V curve that resembles an angular version of the pinched hysteresis, Figure 2.4¢

2.5 Related work

The motivation for this research project grew out of the work by the Nanotechnology Re-
search Group at the University of Canterbury (NRG). The NRG have conducted initial tests
using a percolating switch network [34], and the initial results show potential as a basis for
neuromorphic hardware. They continued this work, developing and better understanding the
similarities between memristors and atomic switches [9].

Atomic switches have potential similarities to memristors, most notably their conductance
is a function of past inputs. Because of this they may well be suited to the same roles as
memristors, including uses in neuromorphic hardware. Atomic switches are manufactured
in a random way, meaning larger numbers are more easily produced. Because the resulting
networks are relatively simple to make but complex in structure, there is a lot of scope for
research into their behaviour.

The NRG have been recently been able to manufacture some of these atomic switch net-
works using large magnetised vacuum chambers at temperatures below 200 K. The resulting
hardware is shown in Figure where the gold sections are electrical contacts, and the grey
is the tin particle depositions. Figure 2.5b]is a picture from a scanning electron microscope
showing the structure of the chip in nanometre scales. Finally we can see the setup used in
construction of the chip in Figure [2.5¢

The hardware that currently exists suffers from important limitations. First, the speed
at which we can read and write to the chip is severely limited to approximately one voltage
change per second. Second, the number of inputs and outputs is currently limited to a single
input and a single output. Third, the only information we can read from the network is
the amount of current flowing through the circuit, which changes in response to the network
conductance overall. Although initially this project had hoped to use this hardware, the
limitations of this early-stage hardware were too significant to overcome.

The NRG have created a series of Matlab programs to simulate the hardware, using the
approach from a Masters Dissertation by Smith [38, Chapter 3|, who studied in the NRG.
Section [3| covers the algorithms this project uses in more detail, but the Matlab code itself

14

(c) The setup to construct the hardware.

Figure 2.5: Images of the atomic switch network hardware.

15

was quickly abandoned as a viable starting point. Although concepts were borrowed, the
code itself would require significant rewriting, essentially from scratch, to be appropriate for
this project. In addition, the code from the NRG focuses in areas that are not of direct
interest to this project—we abstract these to a higher level without loss of applicability.

Outside the University of Canterbury, other research labs have been working on compet-
ing atomic switch network architectures. One approach is to use silver nanowires, as was
done by Stieg et al| [40]. These silver nanowires form and break in much the same way as
the percolation networks from [Sattar et al., and exhibit memristive properties suggesting
potential neuromorphic applications.

Continued by |Avizienis et al., silver nanowires have strongly memristive characteristics [2],
including the important hysteresis I-V curve. The networks of silver nanowires also contain
patterns within the network, with different sections exhibiting different patterns. This led to
the hope that these could be combined using a readout layer.

Further work by [Sillin et al.) explored the use of reservoir computing using these silver
nanowire atomic switches [37]. Their networks could be used to generate higher harmonics of
the input waves, as well as generate square and triangular waves of the same frequency when
sensor readings from across the network are combined. These results show how the network
dynamics may be able to be used to generate new outputs from an input, a fundamental
feature of reservoir learning.

While the University of Canterbury Nanotechnology Research Group has focused pri-
marily on atomic switch networks, the majority of the literature is devoted to networks of
memristors. Their theoretical properties make them the ideal self-updating neuromorphic
learning component, and so work with small networks has already begun.

In 2010, |Jo et al. proposed using memristors as “synapses” in neuromorphic hardware [17].
They showed that the synapse could be updated by applying voltage pulses in a specific way.
This laid the groundwork for |Linares-Barranco et al.| and [Saighi et al.|to explore spiking-
time-dependent-plasticity with memristive synapses [23| [33]. [Linares-Barranco et al|have
also successfully constructed a self-learning visual cortex. There have been other successes,
including those of |[Hu et al. with distorted letter recognition [11].

In parallel, Zhao et al. explored how to structure memristor networks [42]. In particular,
they demonstrate that the 2-terminal devices so often considered are susceptible to alteration
after training. This is because memristors do not have a “learning” mode and a “predicting”
mode, but instead are always updating their conductance. To combat this, [Zhao et al./design
a 3-terminal memristor that is able to toggle between two modes, and so protect the memristor
from learning when it should not. Such an approach is unfortunately not applicable to atomic
switch networks, but is certainly interesting for memristor networks.

An important discovery was associative memory, first demonstrated by [Pershin and
Di Ventra in [2010| [28]. By exploiting spiking, the continually updating weights of mem-
ristors was considered a benefit, not a problem, meaning that the Hebbian philosophy of “fire
together, wire together” was being realised in hardware. The canonical example shown by
Pershin and Di Ventral was the Pavlov’s Dog experiment. Two signals, a bell and the smell
of food, are initially distinct to the learner. The smell of food is associated with a positive
reward (i.e., food), and the learner is exposed to both signals simultaneously. The learner
successfully associated a bell with food rewards.

Work by [Indiveri et al.in 2013| provides a good summary of learning options using mem-
ristive hardware, and the challenges it currently faces [15]. They discuss learning options
including probabilistic inference using Markov-Chain Monte Carlo sampling, and reservoir
computing in either the ESN or LSM paradigm. Importantly, the discussion does not involve
using a structured reservoir, and instead considers arbitrary networks, not necessarily those

16

in the shape of a tidy grid, as was being used by others.

Until this point, all results used digital neurons connected by memristors. [Kulkarni and
Teuscher| demonstrated learning that does not involve neurons in the reservoir, and instead
relied solely on a collection of memristors arranged in a random graph [2I]. Through this
model, [Kulkarni and Teuscher| were able to match the work by [Pershin and Di Ventra and
achieve associative learning. This is a significant boost to atomic switches: manufacturing
networks of atomic switches with neurons in the junctions is more difficult than manufacturing
a network without them.

Work has continued on the practical features of memristor networks, and has presented
important results. Networks of memristors are very tolerant to variations [4], unlike tradi-
tional computing hardware which requires a strict adherence to device tolerances, else there
could be irrecoverable failure. Additionally, more complex networks consisting of a “reser-
voir of reservoirs” is possible, and can potentially perform better than a single reservoir [5].
Progress on how to simulate these networks has also moved forward, including work by
Konkoli and Wendin| [18] and Smith| [38], resulting in fast simulations of up to 100 mem-
ristors using Kirchhoff’s Laws. There is also some work on determining the quality of a
reservoir |19 22], however this work is still in its infancy, with limited consensus on what
identifies a good reservoir.

17

Simulating Novel Hardware

“One man’s constant is another man’s variable.”

— Alan Perlis

The first phase of this project was to simulate the physical implementation of the hardware.
We start with a simulation to enable rapid prototyping and experimentation before moving
on to hardware experiments. The initial goal of using the actual hardware was abandoned
due to the severely limited read and write time resolution, which was in the order of a second.
Thus although the initial design of the simulator was to allow substituting in the hardware
with minimal changes, this hardware layer was never implemented.

3.1 Percolation networks

A percolation network is most easily considered as a repeating planar graph where each node
connects to a neighbour with probability p [39]. In particular, for p > %, a given sequence
of vertices can be connected as a path. Thus changing p changes the characteristics of this
graph, and so changes the paths through the network.

Percolation networks are worthy of mention because they provide a model of the way
that tin particles behave in the atomic switch network. So long as the coverage p. is kept
below the percolation threshold of %, the network does not form a path between the two
terminals. Because the tin particles are not uniform in size, the percolation threshold is
0.676336, not an exact % [9]. In either case, because of the probabilistic nature of the
connections, networks below the percolation threshold can “short-circuit”, while networks over
the percolation threshold can still be disconnected and so form an atomic switch network.

The simulations by |[Fostner and Brown| simulate individual tin particles, and so spend
a large amount of time randomly depositing the particle centroids [9]. The centroids are
assigned a radius, and then checked to see if any of the particles overlap. When particles
overlap, the form what we will call a group, which acts as a single conducting unit. We assume
that this single conductive unit has zero resistance, because although this is incorrect, the
true resistance is orders of magnitude smaller than the memristors and atomic switches that
also populate the network, and is thus negligible.

When considering how this approach works, it became clear that we did not need this
level of detail in our simulations. In fact, we would quickly be ignoring most of the work
because the basic unit we wish to deal with is a group, not a particle. Because the number
of particles is an order of magnitude greater than the number of groups, it is wasteful to
generate all of them to throw them out again so soon. Furthermore, we don’t care how the
individual particles arrange themselves, only the final characteristics of the groups they form.

18

8000
1

6000
1

Average number of groups
4000

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Coverage

Figure 3.1: The average number of groups parameterised over coverage and chip
side lengths, measured in particle radii and assuming a square chip (points), with the
models (lines) used to approximate the number of groups.

Taking this into consideration, we consider the simulation from a higher level. Building
on work by [Fostner and Brown| and the NRG, we use their existing simulations to build a
dataset of boards from which we can extract key metrics. By repeatedly generating boards
using certain parameters, we can explore how size and coverage influence the number of groups
that will form, and the distances between these groups. The goal is to develop a probability
distribution that yields numbers with the correct range of values for a board without the need
to simulate particle deposition. This means we can move straight to placing whole groups,
saving an order of magnitude in time even before considering the time saved by not needing
to construct the groups from particles.

Using a fourth-degree polynomial, we can accurately model the number of groups over a
wide variety of chip sizes and coverages, with R? coefficients of determination above 0.999.
This accurate model means that a significant portion of information about the board is
contained in five numbers, ag through a4. The final model used is

g(p,z,y) = zy - (0.0145 + 1.0274p — 0.4395p> — 3.7259p° + 3.2781p") (3.1)

relating the width x, height y, and coverage p to the number of groups g. The g groups are
then randomly deposited onto a simulated board. A comparison of the actual data and the
models can be seen in Figure [3.1]

After depositing the groups, the connections between them need to be found. Because
we do not have any particles to query about positioning, we need a new method. The groups
must connect in a planar way, so we use a Delaunay Triangulation to determine the underlying
graph. A Delaunay Triangulation will not generate parallel edges, a scenario possible in the
physical structure. Because current will always favour the greatest conductance, and two
resistors (a suitable model for the instantaneous state of memristors and switches) in parallel
will act as a single resistor, we do not consider this limitation significant [38, Chapter 3.3].

19

Average distance between groups

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Coverage

Figure 3.2: The mean distances between groups parameterised by coverages and
chip side lengths, measured in particle radii and assuming a square chip (points), with
the models (lines) used to approximate the mean distance.

In addition to finding the number of groups and how they connect, we must determine
how far the groups are from one another. This is because the conductance of the tunnels
between the groups is a function of the distance between the groups,

G(i,§) = ae PH) (3.2)

where G(i,7) is the conductance of the gap between groups i and j of size £(i,j) [9]. «
and (8 are empirically derived parameters, typically set to be a = 1 and 8 = 100. For this
assignment, we use 8 = 10 to avoid potential numerical instability, as e 100 ~ 3.7 x 10744,
Although this is within the range of a double-precision floating point number, we make this
adjustment because the resolution needed for this project is very fine, and because the change
of B does not impact the result in any meaningful way beyond changing the magnitude of
the starting conductances.

The distances £ themselves are unknown without the individual tin particles, as the groups
we have defined above are infinitesimal centroids. To assign distances to the tunnels, we turn
again to the simulations from [Fostner and Brown|l As before, by sampling distances from the
existing simulations we can avoid simulating every particle, and instead model the distances
with a distribution, which we can draw from instead.

We initially assumed that this distribution would be normal, so we calculated the mean
and standard deviation for each grid size and coverage. When conducting simulations to
determine if the generated networks matched the behaviour of the expected results, there
was a significant discrepancy. When inspecting the mean, minimum, and maximum distances
in the network it became clear that the maximum distance and minimum distance were not
balanced around the mean value. This means the distribution has a significant skew which,
once accounted for with a scaled beta distribution, yields accurate simulations. The final

20

Figure 3.3: An example network generated using the group models, distance mod-
els, and a Delaunay Triangulation. Note that the edges are not proportional to the
distances between the groups.

distances ¢ are drawn from
Xr+e (3.3)
where _
! —¢€
r

X ~ Beta (1, 1;”) and w= (3.4)
such that ¢ is the mean distance for the given size, r is the range of values, and € is the
smallest distance between two groups before they would be considered a single group.

Empirical results suggest that the range is always between essentially 0 and 30 units, thus
we set 7 = 30, and € small, around 1 x 1071°. We model ¢ in a similar manner to the number
of groups, again using a polynomial and consistently reach R? values above 0.97. But the
model is less “clean”, requiring a deeper level of modelling than was suitable for the number
of groups. For a given board size x x y with coverage p, we can write the average distance
between groups on the board £ as

; b(p) . c(p)

Uz, y,p) = a(p) + N + e (3.5)

where
a(p) = 3.90 — 20.76p + 55.78p? — 71.48p> + 33.67p*
b(p) = 39.28 — 172.59p + 437.66p> — 497.85p° + 334.98p* (3.6)
¢(p) = —749.77 + 4405.25p — 12599.52p% + 16937.46p> — 10645.31p*.

The /Ty term comes in because it represents the geometric average of the side lengths, and
so this polynomial can be viewed as a quadratic function of the inverse of the geometric mean
board side length. The models can be seen in comparison to the actual data in Figure (3.2
Combined with equation , we can approximate everything about the board using only
x, y, and p.

By combining both the group models, the distance models, and a simple Delaunay trian-
gulation, we are able to simulate the result of tin particle deposition in a percolation network
for a variety of board sizes, with samples from 20 x 20 through to 200 x 200 units, and
coverages p varying from 0.1 through to 0.7. We use this model moving forward with the
simulations of circuits composed of these groups and connections. We will subsequently refer
to this board simulation as the chip. An example of the final product of these models can be
seen in Figure [3:3] although the edges between vertices are not proportional to the distance
between the groups.

21

3.2 Kirchhoff’s laws

Although we deviated from previous work in constructing the simulated network, the under-
lying calculations are essentially the same. Hence most of the following is a restatement of
the work by |[Smith| [38]. We introduce multiple input connections with distinct voltages as a
minor extension over the existing work.

Given a circuit, how does one simulate the current and voltage passing through it? At the
core of the answer lie two fundamental physical equations, known collectively as Kirchhoff’s
Laws [36, Section 28.2]. The first, Kirchhoff’s Current Law, is defined in the following
Definition 3.1} The second law is Kirchhoff’s Voltage Law, defined as follows in Definition [3.2}

Definition 3.1 (Kirchhoff’s Current Law)
The directed sum of current at a vertex must be zero. That is,

> I;=0 (3.7)

JEN (1)
where N (¢) is the set of all neighbours of vertex ¢, and I;; is the current between
vertex ¢ and vertex j, signed such that currents flowing from j into ¢ are negative.

Definition 3.2 (Kirchhoff’s Voltage Law)
The directed voltage around a cycle must sum to zero.

Because of Definition it is immediately clear that if the chip is the sole element in
the circuit aside from the power source, then the output voltage of the network must be zero.
Similarly, it becomes clear that an arbitrary voltage can be written to each input by assuming
a resistor of appropriate value is in series with the input. Variable resistors make such an
input simple to generate. By these results, we can focus all further attention upon the chip
using the assumptions of arbitrary input voltages and zero output voltages.

The current in Equation between every vertex is not trivially found, and so by using
Equation for memristors, or Ohm’s Law for atomic switches, we can instead rewrite it

as
Y G-V =) GyVi—Vi Y. Gy =0 (3.8)

JEN(9) JEN (@) JEN (@)

We use the difference of voltages between two vertices because the voltage across the edge
component is the voltage drop between the two vertices. The conductance between each
node is initially set by Equation , and then updated based on the update rules for the
components.

Importantly, this definition is valid only if the vertex is inside the network. If instead
a vertex is in contact with an input or output connection, we must account for the extra
voltage and current connection. To do this, we introduce [, and Iy, two vectors which are
nonzero in the entries that are in contact with the input and output connection, respectively.
Thus we can now rewrite Equation as

(Iin)i out Z ngv V Z sz—o (39)

JEN(3) JEN(9)

Finally the boundary conditions are trivially set using earlier assumptions. We set the voltage
at the input connections to be the input voltage for that connection, and the output voltage
is always zero.

Using Equation (3.9 and the boundary voltage conditions, we can create the matrix G
and boundary vector v, shown in Figure [3:4] The matrix G is constructed in a consistent
way:

22

7.
8.

_(EGU) G12 1 %] 0
Ga1 _(ZGZJ') Va
. . 1 .
-1

1 o
1 " Vi
0 0 I Va

1 I :

1 vt 0

0 0 Igut .

1 : 0

G X v

Figure 3.4: Matrix G, boundary vector v, and associated linear equation to solve
Kirchhoft’s Laws for the voltages at every node.

. Designate each of the g vertices as internal, input € Z, or output € O.
. Construct a square zero-matrix with size g + |Z| + |O| in each dimension.

. In the top left g x g sub-matrix, set the elements as follows:

Gij =1 _ Dokens) Gie i = j. (3.10)
Gij otherwise

. The g x |Z| sub-matrix horizontally adjacent contains a 1 in every entry Gj g4; such

that vertex 7 is attached to input connection j. The transpose is also filled in such a
manner.

. The g x |O| sub-matrix horizontally adjacent again contains a —1 in every entry

G; g+7/+j such that vertex ¢ is attached to output connection j. The transpose is
also filled in such a manner, except with 1 instead of —1.

. The lower right (|Z| + |O|) x (|Z| + |O]) sub-matrix remains filled with zeros.

The boundary vector v is initially set to all zero, and has size (g + |Z| + |O|) x 1.

Fill vgq; = u;(t) where w;(t) is the ith input value at time ¢.

By solving the system of linear equations

Gx =v, (3.11)

23

we are able to determine the voltage at every vertex, the current across the chip, and hence
the current across each edge. Using the SciPy scientific library, we can solve the system of
equations in Figure [3.4] using an LU decomposition through scipy.linalg.solve, running
in O(n3) time where G is n x n. Underneath, this makes a call to the LAPACK libraries, a
well-tested library of matrix algebra functions.

3.3 Tunnels

The edges between vertices in the underlying graph structure of the chip have a physical
interpretation in terms of groups. They serve as places for the electrons to pass from group
to group, and so we refer to them as tunnels. For the purposes of this project, we consider a
tunnel to be either a resistor, memristor, or an atomic switch. There is no technical reason
why we are limited to these tunnels, and more exotic tunnel types will change the learning
behaviour of the network.

All the tunnels follow a consistent interface, constructed based on their initial conductance
and gap sizes, and updated based on the current and voltage passed through them. This
means any class that follows this interface can be inserted into the chip. This enabled rapid
prototyping and comparisons.

The tunnel calculations are applied to every tunnel concurrently. By collecting every
tunnel into a matrix, we can perform operations using vectorised SciPy matrix operations,
implemented in C or Fortran. This ensures that we keep the expressive—and fast to code—
Python layer at the top of the stack, but use an appropriately efficient language at the
numerically intensive layers.

Resistors are the simplest tunnel, acting as a linear transformation. They do not update
because they are stateless, and so are simple to simulate in large quantities. They form a
“sanity check” for the suitability of the simulator, because their behaviour is simple to predict
and verify. The resistors would also form a baseline for what behaviour can be attributed
to the chip, and what can be attributed to the reservoir learner’s readout layer, discussed in
Chapter

A memristor is a more complicated form of tunnel. The conductance is a function of past
inputs, and given by a differential equation. Solving this differential equation is nontrivial,
because the memristor is not in isolation. If the memristor were in isolation, it would be a
simple matter to approximate a numerical solution and consider it solved. Because we are
dealing with a network of memristors, the solution is dependent not only on the past input,
but also the past input of its neighbours. Although this makes simulations difficult, it does
offer promise that these will behave much like the ESNs that we are using to model the
learning side of this hardware.

To overcome the difficulties associated with solving this differential equation, we work
back to the most basic definition. By taking a ‘single’ time step and slicing it finely, we
iterate for a sufficiently good approximation, and thus end up with an Euler discretisation:

‘% (@)~ Az = f(2)AL (3.12)
Hence we set At small and iterate towards a solution. This approach is unfortunate in that
it does increase the time complexity by a factor of k& = 1/At, but it does yield sufficiently
accurate results. In an attempt to extract every bit of performance out of the simulator, the
memristor update procedure is written in Fortran.

The final important tunnel type used in this project is the atomic switch. Their modelling
is more straightforward than that of the memristors, because there is no “transition”™—a

24

switch is either off (low conductance), or on (high conductance). The low conductance state
is as defined in Equation , and the high conductance is set at 10Q~!. There are also
switching conditions based on the electric field induced through a tunnel, and the current
passing through a tunnel. Because of the random nature of the tin particles, there is a
probability parameter (P} and P|) controlling each switch direction [9].

A tunnel will switch from the low conductance state to the high conductance state under
two conditions: first, a random uniform variable P satisfies P < P;; second, the field across
the tunnel is above a threshold field strength Ep. The field strength E across a tunnel of

length ¢ is given by
A
E= TV (3.13)

where AV represents the voltage drop across the tunnel. This is a more accurate model than
the voltage threshold model from Equation , because the forces induced by the field
cause the tin particles to move and form the “bridges” causing the high conductance.

The switch down condition is different to the switch up condition. Again, we draw a
uniform variable P to satisfy P < P}, but no longer consider the field strength across a
tunnel. A bridge between two groups will break should the current across the tunnel exceed
a threshold current I7. The switch down probability is typically set substantially lower than
the switch up probability, because it is more difficult to break a bridge than to form it.
Fostner and Brown|showed that switch down conditions only add noise, and do not affect the
overall results [9].

Regardless of tunnel type, it is important to be able to determine what is happening inside
the network. Although in simulations it is trivial to measure every tunnel, on the physical
chip this is more challenging. After consultation with Professor Brown, we have determined
that a matrix of sensors is a viable method to sample the network. Thus our simulations do
not return the tunnel measurements, but average over an area of the chip and feed into a
sensor. The chip is divided into a grid, and each tunnel is assigned to a grid position based
on the midpoint of the edge between two group centroids. The mean of the currents through
each tunnel that is in a grid position forms a single datapoint in the readout. This means we
have information about the current from every part of the chip, much like we would have in
a traditional ESN.

3.4 Putting it together

The concept of a tunnel has so far been kept distinct from the concept of a chip. Because of
the use of consistent interfaces within the simulation, any class that adheres to the Tunnel
protocol is suitable to serve as a tunnel, meaning that we can model a wide variety of chips
with the same chip class, which we call MemChip. Figure[3.5]serves as a structural guide as to
how all this fits together as a UML diagram. The private methods that go in to generating
the simulated chip, such as the random distributions and chip layout, are not exposed nor
included in the UML diagram.

Keeping in mind the code was initially designed to wrap around actual hardware, the
interface is sparse. A MemChip is initialised at a certain size, coverage, and tunnel class, with
other optional parameters. The optional parameters are the number of inputs and outputs,
whether to use the sensor grid, and an override_depositions flag to use a specific chip struc-
ture. There are two other ways to initialise a MemChip. The first is MemChip.with_groups,
which replaces the width, height, and coverage parameters with a single groups parameter,
which specifies how many groups should be on the chip. A square MemChip is then gener-
ated with coverage 0.65 with appropriate sidelength. The second alternative way to generate

25

MemChip

width: int

height: int
number_of_groups: int
diameter: int
input_count: int
output_count: int

with_groups(count: int, type: Tunnel): MemChip
from_layout(layout: dict, type: Tunnel): MemChip
write(input: matrix[float]): triple[matrix[float]]
draw(canvas: canvas): void

Resistor ?

Tunnel
- @ initial_conductances: matrix[float]
Memristor [~>a& sizes: matrix[float]
= apply(voltage: matrix[float], current: matrix[float]): void
AtomicSwitch | | = read(): matrix[float]

Figure 3.5: A UML diagram of the MemChip and Tunnel classes.

a MemChip is with MemChip.from_layout. With this initialisation, the width, height, and
coverage parameters are replaced with a chip structure, specified as

Dict {
node_index: (
(x_location, y_location),
[(neighbour_index, distance) for each neighbour])}

which can be used for more unusual or specific chip layouts, such as those required by [Pershin
and Di Ventral and their maze-solving [29].

Once the chip has been initialised, it can be drawn using the draw method, which accepts a
canvas to draw on, and two parameter which control what is presented. The first parameter is
a flag controlling drawing the underlying grid structure, while the second optional parameter
is the conductance of the tunnels at a given time. The second parameter thus implicitly
controls the opacity of the edges, meaning that a high conductance is more opaque, while a low
conductance is more transparent. The key reason for drawing these networks is to understand
how they assemble themselves. Because these networks are statistically generated, we were
unsure in advance the actual structure these chips could take. By drawing them, we are able
to reason more effectively about the interaction between the groups and discuss the physical
properties they might have.

A chip can also be “written to”, meaning to apply a sequence of voltages to the input
groups, using the write method. The input format is as a matrix where each row ¢ is an
individual input vector (u(t))T. The matrix will have 7 rows, one for every input time. At
each time ¢, the input vector u(t) is applied to the chip and output data collected. This
output data is constructed into corresponding matrices where row ¢ contains the output at
time t.

The chip collects three kinds of outputs, and returns them as a triple. The first element
of the triple is a vector of the conductance of the entire chip for the corresponding input.
The conductance of the entire chip at time t is

G(t) = z“:sé)f(' (3.14)

26

where ug(t) is the first element of the input-voltages vector u(t). This makes the assumption
that every entry in the input-voltages vector is the same, and if this is not the case the
question of the conductance of the chip has no strict interpretation, and thus no sensible
answer.ﬂ Thus the first element of the triple is None in the case of multiple input voltages.
The second element of the triple is the matrix of currents passing through the output groups,
where row ¢ contains the currents coming out at time ¢. The final element of the triple is the
matrix of sensor grid readings, each time step represented as a row, and each sensor’s reading
is an element in that row. From these three types of outputs we should be able to extract
any potential learning information in the chip.

Now the chip can be created, written to, and read from. The time complexity of creating
the chip is dominated by the Delaunay Triangulation, which runs in O(nlogn) time, where
n is the number of groups. Reading to and writing from the chip are intertwined, and their
complexity is a product of the resolution of the differential equation solver, and solving the
linear equations. Together, the time complexity of the chip simulation is O(kn?), where n is
again the number of groups and k& = 1/At is the number of iterations needed to solve the
differential equation in Equation (2.14]). The number of iterations is inversely proportional
to time estimated with each differential equation iteration, At.

Because of the unavoidable complexity involved with this simulation, in Python the results
were unacceptably slow. To overcome this, we decided to move the slowest parts of the logic
to Fortran. Fortran was chosen for two main reasons: first, the simulation works extensively
in matrices and linear algebra, essentially the raison d’étre of Fortran; second, the £2py utility
from the SciPy project makes combining Fortran and Python code trivial. Modern Fortran
is highly readable, exceptionally fast, and compatible with OpenMP, a library that enables
simple parallelisation, the kind possible with the matrix operations we perform.

'Equation is essentially G = I/V, using a special case of I and V for our chip. Multiple input
currents is simple to account for because total current is the sum of parallel currents. Multiple voltages is
less obvious, because voltage does not add this way, and instead of being conserved like current it must be
consumed on its path to the sink. From this there are two concerns: where does the path lead, and what is
the conductance along this path. The first concern comes from the fact that if the energy drop between two
inputs is high enough, and the resistance between them low enough, the current will actually run from one
input to the other. This can be worked around with diodes, but in general illustrates an issue with asking
about the conductance of a multiple-input device like the chip. The second concern leads to the conclusion
that each input produces a separate conductance measurement for the chip, because the path it takes will
have a different conductance. This means the “conductance” of the chip is actually not a single number at
all, but a matrix of measurements relating every terminal (both input and output) to every other terminal.
However, actually calculating this matrix is difficult because the paths are not independent, and is well outside
the scope of this project.

27

Constructing a Reservoir

“All models are wrong, but some are useful.”
— George Box

Reservoir computing as a paradigm is well-suited to hardware implementations due to the
fixed nature of the weights between neurons in the reservoir itself. For this reason it became
the basis of learning in this project. In this chapter we discuss our reservoir computing
implementation, and how we integrated the hardware simulations into the learner, as well as
some of the reservoir features associated with learning.

4.1 Abstraction

A reservoir learner is essentially a composition of three layers: an input layer, the reservoir,
and a readout (or output) layer. Each layer is worth considering individually, because it be-
comes clear that they can extrapolate out to interfaces that, once implemented appropriately,
become modular and useful.

We consider first the input layer. This layer is potentially the most basic. We define
the interface as the transformation input : Rt — R™ for arbitrary [and m. These minimal
restrictions mean that essentially arbitrary transformations are possible. But this does not
mean that arbitrary transformations are useful. For this project, we focus on two transfor-
mations: identity, and bias. The first, identity, is as it sounds—the identity transformation.
The point of this transform is to enable us to act as if there was no input filter, and carry on
anyway. The second is more important, because bias is an important and necessary part of
machine learning. This transform is defined by the simple mapping

x — [1;x]. (4.1)

Bias in this particular form is also part of the definition of an ESN.

The readout layer is a more complex layer, and is the layer that actually partakes in
the “learning” as it were. This means the layer must be sufficiently powerful to train and
map reservoir-transformed data to desired outputs, but should also ideally be easy to train—
if the readout layer is not easy to train, a key benefit of reservoir computing disappears.
The interface is again broad, but now consisting of two functions. The first is training:
train : R™*™ x R™° — @, working on an entire matrix of outputs as may be required by
the learning algorithm—r7 is the number of training examples. Although a multitude viable
options exist such as genetic algorithms [2], the most common is a variant of linear regression.
The version we chose for this research is ridge regression, which will be covered more in
Section [4:2] An important consideration is the implicit learning power of the readout layer
without any influence from the reservoir. Many of the readout algorithms are themselves

28

MemChipReservoir

= chip: MemChip

BiasedInput
ResearvoirLearner <7
v = input_transform: InputTransform e —
Input = reservoir: Reservoir e
= : = output_transform: OutputTransform & " loaki .
= input(input: Vector): Vector - : = = leaking rate: float
= warmup(inputs: Matrix): void . = reservoir(input: Vector): Vector
= fit(inputs: Matrix, outputs: Matrix): void
Taentity = predict(input: Vector): Vector é
? EchoNeurons
Readout = sparsity: float
— : : : = spectral_radius: float
= train(input: Matrix, output: Matrix): void
= readout(input: Vector): Vector

L

RidgeRegression

= regularisation: float

Figure 4.1: A UML diagram of a reservoir learner.

capable learners, and care must be taken when attributing learning. The second method
exposed by the readout layer is readout : R™ — R°, which performs the prediction as learned
via train.

The reservoir is the most variable layer, with an interface again flexible: reservoir :
R™ — R™. To fully meet the definition of an ESN, the reservoir should also satisfy the echo
property—that is, the current state should be an injective function on the entire history. In
this research, the reservoir received the most attention, being where the memristive hardware
of interest becomes relevant. We also define reservoirs matching the specification of an ESN;,
as well as variations of ESNs. Further variation of reservoirs is possible, and an avenue for
future research.

Together, these three layers can form a complete reservoir learner. Figure [4.1] contains a
UML diagram outlining the structure of the reservoir learner. The reservoir learner exposes
methods corresponding to three distinct steps: warm-up, fitting, and prediction. The fitting
workflow is straight forward: for each input vector u(t), calculate the transformed vector

x(t) = (reservoir o input)(u(t)); (4.2)

collect these transformed vectors together as a matrix X such that each row is x(¢)"; train
using the matrix X against the expected output matrix Y28t via trein(X,Ytareet) ytarget
consists of rows of the expected output vectors y(t)'. The warmup phase is a simple step
in which data is fed to the network much like in the fitting phase, but makes no attempt at
training. Finally, prediction is the composition

y(t) = output(x(t)) = (output o reservoir o input)(u(t)). (4.3)

In practice it is not this tidy, as often the input vector u(t) is vertically concatenated onto the
vector x(t) before being sent to the output layer, however this can be considered a function
of the reservoir and thus preserving the data flow as defined above.

As an illustrative example, we outline how a “standard” ESN could be implemented in
this model. Consider first Equations defining an ESN, notably the inclusion of a bias
added to the input u(¢). Thus the input layer is BiasedInput, using the function from (4.1)).
We call the result of the input v(¢) = [1;u(t)]. The reservoir layer of the ESN is the most

29

complex. Building atop Equations (2.7) we can write

x(t) = V() X/(0) w

x'(t)=(1—a)xx'(t—1) + a x tanh (Wmv(t) + Wx'(t - 1)). '
Both W and W™ are simply random matrices with entries drawn from a uniform random
distribution over the range [—0.5,0.5], made sufficently sparse, and then scaled according to
the desired spectral radius. Finally, the readout layer is a linear ridge regression, which will
be outlined in more detail below. Briefly, we can write

y(t) = output(x(t)) = W"x(t) (4.5)

assuming an already trained Wout,

The main focus of this research is of course having the MemChip serve as the reservoir.
To accomplish this, we create a small wrapper around a MemChip, ensuring it correctly im-
plements the reservoir interface. The input layer is usually taken to be identity, but this is
not a requirement. The readout layer is a linear map trained via ridge regression, like in the
ESN implementation. We take the output vector of the reservoir to be the current readings
from the sensor grid.

4.2 Readout weights

Now that we have established a framework for reservoir learning, we turn our attention to
the readout layer as implemented in this project. As mentioned earlier, a wide variety of
approaches are viable, but we chose to implement a linear regression using ridge regression.
This decision was made because linear regression is a sufficiently powerful learning method
to extract the necessary information from the reservoir, while still being simple to train, and
not so expressive that it would be capable of the entirety of the learning.

The readout layer, being a linear regression, is very simple to use once trained—see
Equation (4.5). Thus the only remaining problem is how to determine the values of W°ut,
Again, many possible solutions to this problem exist, and it is well-studied already. Options
include gradient descent, direct and pseudoinverse calculations, and—our chosen approach—
ridge regression, also known as Tikhonov regression [24]. Ridge regression is an advancement
on what are commonly known as the normal equations, adding a regularisation coefficient 5,
which serves as a penalty against large values in Wout,

When attempting to “solve” for WO the underlying goal is best stated as finding some
matrix that minimises the distance between its approximation and the true values it attempts
to learn, all while penalising unusually high entires. Compactly,

lyl
o1
Wwout _ al;%m:n m Z Z(ylparget(t) _ yi(t))Q 4 /BHW?UtHQ (4.6)
o i=1 t=1

where wo' is the ith row of W% [24], |y| is the number of elements in the vector y, and |||
is the length taken as the Euclidean norm of a vector. This minimisation can be condensed
down to the closed-form equation

-1
Wout — YtargetXT (XXT + BI) . (47)

Thus the learning happens in one step once all the training examples have been provided.

30

4.3 Testing and configuration

The ideas around what makes a good reservoir are varied, with little agreement on what
makes one better than another. A common and promising approach is harmonic generation,
but this is difficult to quantify and has little to no reference point. Instead, we will focus
on statistical tests to determine how reservoirs relate to one another. For this, we will need
some data to learn. We have chosen two data sets: one time-independent, the other time-
dependent. Together, these should give us a better understanding of what the networks can
learn. Additionally we will be testing a range of reservoir learners. Along side the ESN and
atomic switch network, we will have a memristor network and a resistor network.

4.3.1 Datasets

The Mixed National Institute of Standards and Technology (MNIST) database is a standard
machine learning dataset. Composed of over 70000 images, the MNIST database contains
hand-written digits (0-9) converted to greyscale and scaled to 20x 20 pixels. This dataset is
extensively studied, so we can know in advance how the performance of our classifier compares
to others. Note that this dataset has no time dependency. Because all our learners should
have memory, to prevent them learning by counting, we shuffle the dataset.

In comparison to the MNIST database, we needed a dataset that required the learner
to remember the past to predict the future. Many such datasets exist, such as sunspots or
stock markets, but the dataset we have chosen is the Mackey-Glass series. The Mackey-Glass
series is attractive because it is defined in terms of a differential equation with a “difficulty”
parameter 7, ranging from 17 upwards, with the complexity of the curve increasing with .
The full form of the Mackey-Glass equation is

dx Tr

Ezﬁl—i—x?

-, /87/77“ > 07 (48)

where 3, v, and n are all real numbers, and x, is the value of the x variable at time ¢ — 7.
Thanks to 7, the difficulty of the problem can increase to explore the learning potential each
of our neuromorphic learners have. The particular values used are in Appendix [B]

4.3.2 Reservoirs

Every experiment needs a baseline, and the ESN serves this purpose as an upper reference.
While it is unlikely that these learners will exceed the performance of an ESN, it serves as a
goal for which we can aim. The ESN is (relatively) well understood [24], and although it has
many parameters to tune, the performance is largely decided by three key values: spectral
radius, leaking, and regularisation. The values we used for each parameter of each learner are
recored in Appendix [Bl Thus we can be confident the ESN we use for testing is sufficiently
tailored to the challenge set to it. Worth noting is that an ESN was not designed for use
with a time-independent dataset, but instead is designed for temporal datasets. This makes
the MNIST database an unfair test, but it does reveal what impact the reservoir and readout
layer have on learning.

The memristor network is the first neuromorphic reservoir that we tested. Consisting of
a model identical to the atomic switch network but with memristors in the place of atomic
switches, this network was initially going to serve as a comparison against the work of others,
to see how the simulator outlined above performs in relation to existing memristor simulations.
However, because the network in the simulations we ran is homogeneous, there are limited
parallels with existing work—almost all research has chosen to focus on reservoirs with digital

31

ESN Prefixes

/' T \ A Acyclic

AESN NESN CESN C Conservative
T >< >< T FF Feed-forward
FFESN CAESN CNESN N No-echo
/ \ T / O One-hop
OFFESN CFFESN
~N 7
OCFFESN

Figure 4.2: A diagram of reservoirs and how they relate. Arrows represent the “is a
restriction of” relationship.

neurons alongside the memristive hardware. As with the ESN, the parameters we use are
in Appendix Although the hardware we are simulating is restricted to a single input
and output, we adjust this number as necessary for our learners because this can change in
hardware.

Atomic switch networks represent the hardware built by the Nanotechnology Research
Group at the University of Canterbury, constructed as outlined in Chapter[8] Atomic switches
can be considered a type of memristive hardware, despite being constructed entirely differ-
ently. Although they bear a resemblance to memristors, the instantaneous and binary nature
of their conductance may present new learning potential or restrictions. We wrap the chip
simulation in a simple wrapping class meaning that it can expose the correct reservoir inter-
face, and can insert it with minimal difficulty into a learner much like an ESN.

The last neuromorphic hardware chip we simulate is a network of resistors. This network
serves as the lower baseline of how these reservoirs should perform. A network of resistors
behaves exactly as a single large resistor, so there is no potential for any learning outside
what the readout layer is capable of. Resistors also enabled us to test exactly that—the
capabilities of the readout layer. This means we know where to attribute the learning that
we observe in the network.

When running these tests, it became clear that there was a steep disparity between the
ESN and the neuromorphic reservoir simulations. To explore why this was, we ended up
creating a wide variety of reservoirs, each with or without certain features present in an ESN
or neuromorphic reservoir. However, some features of a reservoir preclude others. Because
of this, a family of reservoirs was developed, and the inheritance structure is complex. The
total collection of reservoirs is shown in Figure [£.2] The reservoirs alter a pipeline available
to change the structure of the reservoir in a consistent way, and thus build up more complex
combinations of feature restrictions. The exact choice of which features to remove is discussed
in Section along with how they are related and which features are removed. We consider
an “unweakened” ESN to be the most powerful version, while the “one-hop” ESN represents
the weakest form of learner. We wish to determine where a memristive neuromorphic chip
belongs in this taxonomy.

4.3.3 Testing

Because learning is not a guaranteed process, we allow each learner to have ten attempts at
learning the data with a different random seed each time. Each time the learner did not fail
to learn we evaluate how it performed. The exact method of evaluation differs between the
MNIST database and the Mackey-Glass predictions because of the nature of the datasets.

32

We draw attention to the fact that “did not fail to learn” is not synonymous with “successfully
learned.” Precisely, we consider “did not fail to learn” to mean that the learner produced a
bounded model of the dataset, but place no requirement that this model accurately predicted
the data.

When testing learners on the MNIST database, we provide them with first half of the
database as training data, and the second half as evaluation data. We present the individual
(per-digit) and overall (mean) precision and recall of the learner over the dataset, both for
each individual learner of the ten and the mean value. Using the notation that pred(c) is the
set of instances predicted to be of class ¢ and act(c) is the set of instances truly in class c,
the precision of a learner on class c is defined as

_|pred(c) Nact(c)|

precision(c) = pred(c)] (4.9)

and the recall of a learner on class ¢ is

recall(c) = |pred|(:c)t?;’ct ()] . (4.10)

A slightly different approach is taken for the Mackey-Glass prediction test. Because there
is not a finite number of classifiers, we must use a measure of accuracy that is more suited
to the desired outcome. In this case, we are interested in how closely the predicted curve
follows the actual curve. For this, we use a metric called the correlation distance, measuring
the distance between two curves represented by vectors a and b by

(a—a)-(b—Db)

deorr(a,b) =1 — — —.
|a —ally[[b —bll,

(4.11)

The symbol a is the mean value of a with subtraction applied element-wise, - is the dot
product of vectors, and |-||, is the Euclidean norm. This particular distance metric was
chosen as it better captures the intent to follow a curve rather than how far apart two curves
happen to be. Using this metric, we are able to explore more thoroughly how two learners
perform relative to one another when attempting time-series prediction.

33

Comparisons and Results

“A big computer, a complex algorithm and a long time
does not equal science.”
— Robert Gentleman

Throughout this project, testing and evaluating has been an ongoing process. Different tests
have driven development down different paths, and the results given in this chapter highlight
the important milestones along this path. They are presented not necessarily chronologically,
but in what would be considered a natural progression through ideas and understanding of
the final conclusions. This may at times mean some results are directly obvious from others,
but at the time of the experiment this was not the case.

5.1 Replication

When designing software that models hardware, checking how the two compare is always a
sensible first step. Because the atomic switch networks we are modelling are produced by the
Nanotechnology Research Group at the University of Canterbury (NRG), we use the results
they present in their paper and attempt to replicate exactly those results again [9]. Although
they present many different variations over different tests on parameters in their paper, we
focus on a few illustrative cases here.

Fostner and Brown) illustrate the response of the current through the atomic switch net-
work by plotting the current over time as it responds to a series of voltage ramps from 0V
through to 1V. Figure is the same plot generated by our network simulation using
parameters as for their Figure 2(b,c), repeated here as Figure Note the similarities
in the key features—steady responses to the input voltage, delay on the initial ramp, and
the stunted first peak. This is an exceptionally promising first start, but does not detail
the conductance of the network of atomic switches, the most important characteristic of a
neuromorphic system.

Fostner and Brown| also present figures as in [5.2b] showing how the conductance of the
chip changes through a single voltage ramp from 0V through to 0.5, 1, or 5 V. This is to test
how the network behaves in the long term, once a “steady” or “saturated” state is reached.
Figure presents the same plot generated by our simulator for a chip with coverage 0.65.
We see how the low switch-up probability noticeably lags behind the other two curves, whereas
the 10 % and 80 % curves track closely, with 1% lagging behind slightly. The similarities are
sufficient that we can confidently conclude that the simulation is an accurate model of the
work by the NRG.

A test that had incredibly successful results in the literature was by [Pershin and Di Ventra),
tasking the network with finding the shortest path through a maze [29]. This problem makes

34

(b)

: < 20
O:T —
0
(c)

1.0 1
. 08 s
%06 >05
S04
>

0.2 | 0

0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘] 0 100 200 300 400

0 50 100 150 200 250 300 350 N
Time steps v
(a) Results using our simulation. (b) Figure 2(b,c) in [9].

Figure 5.1: The current through the chip (coverage 0.65) as voltage ramps between
0V and 1V are applied. Actual current values are different due to different Gax.

intuitive sense, as memristors can scale their resistance based on the current that flows
through them, so the shortest path will have the lowest resistance and so have the most
current. To confirm that our network was capable of a task it should so clearly be able to
manage, we gave it the same challenge. As expected, it completed this challenge with no
difficulty. The downside of this approach is that the problem being solved is not general-
purpose, but in fact encoded into the hardware of the chip. Thus although such a problem
is trivially solvable with these networks, it in no way helps the goal of building a general-
purpose learner. We do not agree with |[Pershin and Di Ventral that this technique can be
used to efficiently solve the travelling salesman problem.

One avenue of research that has seen repeated interest is that of associative learning.
Associative learning is when the current input for a given response is provided concurrently
with a new input, and so the new input is associated with the response by the learner. The
most famous example is Pavlov’s Dog, in which a dog is trained to associate a bell with
food. The same experiment can be conducted with artifical learners, and our neuromorphic
reservoir learners. Two forms of associative learning with reservoir neuromorphic networks
exist: the first where memristors are simply the weights between digital neurons, i.e. the
reservoir is heterogeneous; and the second where the network consists solely of memristive
hardware, i.e. the reservoir is homogeneous.

Pershin and Di Ventral describe a heterogeneous network of digital neurons connected by
memristors acting as a neural network [28]. This network is shown to be capable of associative
learning using food and sound signals to a salivation response. Importantly, this is achieved
without explicitly associating the sound input to the salivation response. However this success
does not transfer over to our large networks of memristive hardware because the networks
we simulate are homogeneous, lacking the digital neurons. The digital neurons also spike,
meaning that once a certain threshold is passed the neuron will send a short pulse of current
both forward and backward. This makes the network entirely unlike our own, combined with
the lack of random assembly meaning that the successes reported by [Pershin and Di Ventral
have little bearing on this research project.

Given how dissimilar the work of [Pershin and Di Ventralis to our work, to find the work
from Kulkarni and Teuscher| so similar was surprising [20, 21]. This work describes a ran-
domly assembled network of memristors, with no mention of digital neurons, only junctions.
Kulkarni and Teuscher| present a working associative learner using their simulation, some-

35

10 [(e)

100}

—
(o=}
L
T

Conductance (logarithmic) log 2~*

— 0.01
— 0.1
— 0.8 1 0-2 .
107 ‘ ‘ ‘ ‘ ‘ 0 2
0 500 1000 1500 2000 2500 3000 10 1 0
Time steps N
V'
(a) Results from our simulation (b) Figure 6(e) in [9].

Figure 5.2: The conductance of the chip (coverage 0.65) as a voltage ramp up to 1V
is applied. Comparable to Figure 6(e) in [9].

thing that we were unable to recreate. No combination of memristors or atomic switches
we tested was capable of performing as required in this test. Even ESNs were incapable of
learning in the way described. Because this paper is the only one found to suggest these
results, we consider it anomalous.

Much of the research to date has been directed towards using heterogeneous networks of
memristive components mixed in with digital neurons. This has the distinct disadvantage
of no longer being randomly assembled, and so is more difficult to construct, is specific to
the problem being solved, and also requires a hardware model of a neuron. Success in ho-
mogeneous networks would significantly reduce the difficulties associated with neuromorphic
hardware production, but it does make significant changes to the assumptions of the network.
Heterogeneous networks are able to indefinitely delay signals in neurons, add or remove volt-
age in these neurons, and in doing so change conditions in equations such as Kirchhoff’s
Laws, as the circuit is no longer a closed system. Because of the starting assumptions of this
project, we do not simulate heterogeneous networks, and instead focus on the homogeneous
atomic switch networks constructed by the NRG.

5.2 Results

One of the most fundamental machine learning tests is the MNIST database, a collection of
8 x 8 pixel greyscale images of handwritten digits. This dataset tests the time-independent
learning ability of the reservoir, a test that it is not expected to perform exceptionally well
on. This is because the network is designed to learn temporal datasets. Nevertheless, in an
attempt to be thorough, we explore the time-independent learning potential of the reservoir,
supposedly powered by updating weights in the reservoir itself.

The results of the 500-‘neuron’ reservoirs can be seen in Table and similar tables
for 100- and 200-neuron reservoirs is available in Appendix [C] The ESN performed exactly
as well as its readout layer, because the state-holding reservoir makes no difference when
state is irrelevant. Thus it reports precision and recall in the region of 80 % to 90 %. We

36

Table 5.1: Precision (left) and recall (right) for 500-‘neuron’ learners with different
digits, averaged over ten trials.

Digit ESN Memristors Atomic Switches Resistors
0 0.9648 0.9705 0.8140 0.7750 0.9158 0.9466 0.9217 0.9886
1 0.8718 0.8385 0.7740 0.5736 0.7712 0.7626 0.8673 0.8615
2 0.8943 0.9035 0.7608 0.6116 0.9059 0.9000 0.9398 0.8558
3 0.8547 0.8176 0.6614 0.5967 0.8076 0.7736 0.8549 0.8099
4 0.9522 0.8543 0.8623 0.7065 0.9215 0.8826 0.9371 0.8761
5 0.8664 0.8857 0.8537 0.6000 0.8145 0.7923 0.8733 0.8736
6 0.9468 0.9440 0.8011 0.7440 0.9034 0.9418 0.9235 0.9593
7 0.9464 0.8798 0.7674 0.8225 0.8993 0.8674 0.9178 0.9135
8 0.7702 0.8273 0.7030 0.5830 0.7420 0.7227 0.8130 0.8273
9 0.7845 0.8837 0.7762 0.6359 0.7177 0.7804 0.7937 0.8500

Mean 0.8852 0.8805 0.7774 0.6649 0.8399 0.8370 0.8842 0.8816

see comparable results from all the neuromorphic learners, including the resistor network,
meaning that all the learning is occuring in the readout layer (which is identical for each
learner). We can hence consider this figure to be correct, as linear regression can achieve up
to about 90 % with MNIST. Note that the neuromorphic reservoirs are, on average, slightly
lower-scoring, with the exception of the resistor network. This is likely because the underlying
reservoirs are updating their conductances, and so the readout layer is not in fact trying to
learn a single function, but a progression over time of linear functions, something it cannot
do.

Others have attempted such tests with neuromorphic reservoirs. [Querlioz et al.| report
accuracy of 81 % to 93 % [31], not markely different than the results presented here. However
they compare their results to that of neural networks achieving accuracy in the mid-to-high
90’s, considering them close, and therefore similar learners. We disagree with this statement,
and conclude on the same data that these learners are powered primarily by their readout
layer when working with time-independent datasets, and that the reservoir itself plays little
to no role in the learning. Because the primary nature of the reservoir is to provide Statﬂ
this conclusion is neither surprising nor concerning.

The Mackey-Glass test is a useful test of memory and temporal learning. We consider
only the case when the memory length parameter 7 is set to the smallest possible value 17,
for the simple reason that none of the neuromorphic reservoirs were able to successfully learn
in this ‘easiest’ case. We train the model with a sequence of inputs, and then start a feedback
loop to let deviations in the past predictions accumulate. We can see in Figure how
a learner should be able to query its own memory/state to predict the future. Note how it
starts tracking the true curve very closely, only to slowly drift further off over time.

The neuromorphic simulations were less successful, as shown in Figures and
Instead of slowly drifting away over time, the neuromorphic hardware essentially instantly
forgets the complexities of the curve and instead settles in to a sine wave. This pattern is
repeated by all the memristor and resistor learners, suggesting that the only reason there is
a sine wave is because of the linear classifier. Thus there is no sufficiently rich state in the
neuromorphic reservoir for the readout layer to tap in to, and thus there is not the memory

!This is not the only purpose of a reservoir, as the overall goal is for it to transform a non-linearly separable
input into a feature space where it is linearly separable. However it does this by spreading the data out through
time, which is not useful in a time-invariant problem.

37

0.0 0.0 0.0

02 0.2 02

-06 06 -06
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

(a) ESN (b) Memristors (c) Resistors

Figure 5.3: The predicted Mackey-Glass curves, blue (dark grey), plotted against
the true curves, green (light grey), for each type of reservoir.

Table 5.2: The Mackey-Glass correlation distance for learners with reservoir sizes
between 100 and 500 ‘neurons,” averages over ten trials.

Size ESN Memristors Atomic Switches Resistors
100 0.2261 0.8794 — 0.6333
200 0.0572 0.8319 — 0.6142
500 0.0509 0.7365 — 0.6849
Mean 0.1114 0.8159 - 0.6441

which is essential to solving the Mackey Glass problem. For any reservoir size, the atomic
switch networks failed to learn, producing an unbounded model.

Testing more systematically, we can build Table showing how the learners compare
when tasked with the Mackey-Glass test. These results support what the plots have already
told us. Remembering that a correlation distance dcq,r, Equation , closer to 0 is better,
we can see a clear disparity between the two types—ESN performing well with a correlation
distance on average at 0.2280, while the neuromorphic simulations performed significantly
more poorly, the correlation distance around 0.8. Such a distinct difference is immediately
notable, and for reference the correlation distance between the Mackey-Glass curve and a
horizontal line along zero is 1, so the neuromorphic learners are performing only marginally
better to not predicting at all. Interestingly, the resistors yield a better score than we see
from the memristors. We discuss this more in section [5.3] but as before this is because the
resistors do not change and violate the assumptions of linear regression.

The results presented above are not what we had hoped. Ideally, this new network would
be an exceptional learner, but this is not the case. Instead, we have a network that looks like
it has all the features we need, but is incapable of learning. The obvious follow-up question
is “why?” What features, or lack thereof, make the homogeneous neuromorphic networks
perform so poorly at the “simple” Mackey-Glass test? What can be done about this?

5.3 Memory

A reservoir neural network is useful because it learns temporal datasets, whereas a feed-
forward neural network would not. This is because the reservoir is able to maintain state,
which is a source of memory. Here we outline the sources of memory, and discuss why it is
they provide memory. Because implementations of reservoir neural networks using memristive
hardware lack three of the four sources of memory described below, we constructed variations
on the default ESN to explore what influence their loss might have. We outlined these learners

38

in Figure [.2] and will shortly present summary of the influence that these restrictions have.
Because the atomic switches were incapable of producing a bounded model in the previous
tests, this section will focus attention to memristor networks.

We have identified four sources of memory in an ESN: leaking, cycles, loops, and the
discrete time steps. Leaking is the property of either (a) having the state from the previous
time step leak forward in to the current time step, or (b) having the present state be forgotten
partially making room for the past state. Cycles are when there is a sequence of neurons
nine...nEnins Loops are an edge that connects neuron n; back to itself. The discrete
time steps are when the state of a neuron at time t receives information from its neighbours
from time ¢ — 1. This final property works in tandem with the first two to exploit the state
of the network and provide the memory so vital in its power.

5.3.1 Leaking

Leaking is an inherently “external” property, and is not a reflection on the reservoir itself.
Often denoted by the constant «, we mix the past input and the present input using the
convex function

x(t) = (1 —a)x(t — 1) + ax(t), (5.1)

where X(t) is the pre-leaking state of the reservoir at time ¢. Hence « is a proportion, in this
case representing the influence of the present input against the memory of past inputs.

Leaking provides memory because it creates a weighted exponential average of history
in the readout layer. Thus the individual neurons in a reservoir follow the trend of the
input, with the influence of short-term trends controlled by a. By spreading the input over
the network, each region will experience different trends, and so we receive a rich variety of
weighted averages.

Because leaking requires just the past output and the present output, it can be approxi-
mated in any readout layer. This makes it a valuable source of memory because, regardless of
the reservoir type, we can guarantee its presence. Readout layers are typically implemented
in software due to needing training, so leaking is stored as two variables: «, and x(¢ — 1).

5.3.2 Cycles

Cycles provide a reservoir with ‘infinite’ memory. By having the input from past times becom-
ing available again essentially for free, the reservoir can continue to mix in this information
with no concern for when it was introduced. That is, a cycle of length k provides access
to the output of the same neuron from time ¢t — dk, with d € N. This long-term memory
supports the echo property, Equation , that is so important to the reservoir.

Removing cycles is an important research question, because hardware implementations
are unable to recreate cycles. Kirchhoff’s Voltage Law, Definition limits the amount
of energy in a circuit, and forces conservation. That is, a junction is unable to amplify a
signal, and so there cannot be cycles in the network. Having cycles would imply an infinite
sequence of groups where the potential difference drops forever, leading to an impossible
infinitely-descending structure:

Vi>Vo>--->Ve>Vi>-. = V1>V 4 (5.2)

If cycles were to form, energy would cycle forever and become infinite, something not possible
in a physical circuit.

Now, having removed cycles, infinite mixing of inputs is not available to every neuron,
but infinite mixing of input at neuron n for input to neurons m < n is available because we

39

have not yet excluded loops. By modifying input to be repeated (i.e. u(t) — [u(t);u(t)]),
the inputs to neurons m < n are also available at neurons o > n. Thus having loops can be
made equivalent to having cycles, although particular mixes may not be available within the
same number of time steps. This is important as a device which mixes the previous voltage
across a memristor with the present voltage is conceivable.

As an illustrative example, consider a network that once contained the cycle of two neurons
m and n such that m — n — m. Normally we could infinitely mix wuy, (t) with w, (t —2k —1)
and uy,(t — 2k) for any natural number k, and vice versa, by allowing the inputs to cycle
around each other. By removing cycles, such a structure is unavailable. Instead, we can
simulate it with m — n — m’ — n/ such that u,,(t) = uyy(t) and u,(t) = uy(t), and
every neuron also loops back into itself. It is now possible to mix wy,(t) with w,(t — k) and
U (t — k — 1) for any natural number k, as it now occurs further back in the network, and the
cycle acts as an infinite internal delay mechanism for the input. This is a stronger guarantee
than necessary, but does ensure the desired effect of cycles.

As mentioned, Kirchoff’s Voltage Law implies conservation of energy, but the restriction
of conservation of energy is not a restriction at all. It limits a reservoir in the same manner
as the spectral radius, the spectral radius being the largest absolute eigenvalue of the weights
matrix. By ensuring that a neuron’s outputs sum to one, we have effectively forced each
column in the weights matrix to sum to one. The eigenvalues of matrix W are the same for
W', so we can consider the matrix W with row sums equal to 1. For some v, we have

Wiv=(wiv,wiv,...)" =(wi - v,wa-v,...)" (5.3)

Given that w; - v = [[w;l|,]|v][;cos, ||[w;|l, < 1, and —1 < cosé < 1, the largest absolute
scaling possible by W (and thus also by W) is 1. Hence conservation of energy is equivalent
to specifying a spectral radius of at most one. This is not an issue: ESNs are only guaranteed

to work for spectral radii below one [16].

5.3.3 Loops

Loops are a source of memory for the reservoir, again contributing to the infinite memory and
echo property. Because the neuron now has explicit access to its own output at time ¢ — 1,
it creates a type of weighted average, effectively giving each neuron total memory of past
inputs. Cycles give the same effect, but the tighter effect of the loop is more easily emulated
in hardware solutions by sensors and external voltage sources.

As shown by éerﬁansky and Makula, removing both cycles and loops reduces an ESN to
a feed-forward network with delayed-time inputs [6]. The memory of the network is limited
by the longest chain. The network was still capable of solving the typical sorts of problems
such as Mackey-Glass because the memory requirement is by convention set at 17 steps, and
the reservoirs are trivially made larger than this. Removing just one of loops or cycles will
not cause the same reduction in expressive power for temporal datasets. By removing only
loops and not cycles, there is no immediate loss of power—any memory a loop supported is
replicated with a cycle, but with a k-step delay, where k is the length of the shortest cycle
through a neuron. Thus learning may slow, but not stop.

Consider a simple network of two neurons connected by a directed edge in both directions.
If no loops are available, it is not immediately possible to mix the input to neuron ¢ at time
t, denoted u;(t), with w;(t —1). But we can mix u;(t) with u;(¢ — 2). Thus the length of the
cycle through neuron ¢ is two, so there is a two-step delay in the network. In the meantime,
neuron j is mixing u;(t — 1), u;(t — 3),.... The readout layer can mix both streams, thus
mixing w;(t) for all ¢. This scales appropriately for cycles of length k.

40

Algorithm 1 Propagate the input u(¢) over the reservoir defined by W

1: procedure PROPAGATE(W, W™ u(t))

2 v < Witu(t)

3 0+ (0,0,...,0)T

4 for all n € toposort(W) do

5: S < Up

6 for all m € predecessors(n) do > finds all nodes with edges into n
7 54 5+ 0mWnm > W, is the weight from m to n
8 end for

9: on, < tanh(s)

10: end for

11: return o

12: end procedure

5.3.4 Discrete time steps

The discrete time nature of an ESN is the fundamental feature of its memory. This is also
a difficult feature to replicate in hardware. Because a circuit will have the electricity pass
through at significant fractions of the speed of light, no matter how rapidly we switch the
input voltage, we are essentially saturating the network with the same signal millions of times
before switching.

Because of this speed disparity, a hardware network will essentially not contain discrete
time steps, instead it will function more like a traditional feed-forward neural network, which
we will call the one-hop reservoir, where the input u(t) is influencing the entire network at
time ¢, but inputs u(s) from times s < ¢ are not in the network. The difference is now, there
is no new information written to the network before the propagation is complete. Because
of this distinct termination, the network is not allowed to have cycles or loops. We can
propagate the information using Algorithm

But why does the lack of discrete time matter? Because of how a reservoir is defined, it
must have a clear boundary of past and present, and by having the network become saturated
at each time there is effectively no past. The past outputs are the defining feature of recurrent
neural networks, because the ability to use past knowledge is what enables the reservoir to
maintain state, which in turn provides the ability to learn temporal functions.

Because there is now no state in the network beyond the leaking rate, the network will
be unable to learn any function requiring knowledge of previous time steps. Essentially, we
remove the echo property. The state now depends solely on the random initial weights, not
the history of previous inputs as required by an ESN. This network is now an untrained
feed-forward neural network. Hence this reservoir is incapable of learning any of the time-
series problems it was designed to solve. While there are potential applications for traditional
machine learning, by training an equivalent neural network in software and ‘burning in’ the
weights to hardware, this is not a suitable use for memristors—they will update their weight,
and move away from their desired weight.

This comparison is not fair, because a network of memristors does maintain a state,
because the weights do get updated. The question then becomes does the memristor’s state
act as a suitable substitute for the ESN’s discrete time steps? The answer would seem to
be no. By making the ESN have a ‘wobbling’ weights matrix to simulate the updating
conductances of the memristors and switches, we handicap the readout layer by removing
the underlying assumption of regression—for a given input z, there is a function f(z) that

41

Table 5.3: Significance levels between distributions of correlation distances for dif-
ferent learners. Stars signify 95 %, 99 % and 99.9 % confidence intervals.

Discrete vs One-hop Discrete vs Memristor ~ One-hop vs Memristor

Size P Sig. P Sig. P Sig.
50 0.0160 * 0.0001 Hk* 0.3381

100 0.1668 0.0054 ** 0.2224

200 0.0190 * < 0.0001 *** 0.0593

500 0.0440 * < 0.0001 *x* 0.0185 *
750 0.0291 * 0.0001 ** 0.1068

1000 0.0022 ** < 0.0001 *x* 0.4198

1500 0.0036 ** 0.0003 *** 0.7328

2000 0.0237 * 0.0006 *** 0.3445

we attempt to find. Because f is a function, each z uniquely maps to some y. By changing
the weights matrix, we change the function we are trying to fit, and so prevent the linear
regression from successfully fitting the training data.

By generating a large selection of memristor networks and feed-forward conservative ESNs
that are both discrete-time and one-hop with a range of reservoir sizes, we can explore
whether they all exhibit similar learning tendencies, and if not which networks behave most
similarly. We generated ten reservoirs of each learner, with reservoir sizes ranging from 50
to 2000 neurons, trained the reservoir to predict the Mackey-Glass 7 = 17 problem set, and
calculated the correlation distance between the output curve and the expected curve for the
next 200 steps, calculated using Equation Before running statistical tests, we throw out
the “failed” learnings. We determine these by calculating the area between the output and
expected curves. We consider any area that exceeds 10'0 as a failed learning.

A one-way ANOVA test, where the grouping is the pair (learner, size), reveals there is
a significant difference between the groups (F4 = 6.62, p < 0.0001). To see where these
differences actually occur, we perform a Student’s t-test between two learners at each size,
and the result of this is in Table Because there are a large number of t-tests conducted,
and a Bonferroni correction is too conservative, the chance of making a Type-I error rises.
Hence we consider more the “broad strokes” rather than the precise p-values. The first thing
that is clear is that distinguishing between the one-hop ESN and the memristor is difficult,
with only one significant result out of all the reservoir sizes. This is in contrast to what occurs
between the discrete-step ESN and both other learners, in particular memristors. We can
distinguish the discrete-step ESN from either of the other learners with good consistency.

These differences become clear when we plot the predicted curve alongside the actual
curves they were intended to match. The examples in Figure show how each reservoir
fares as a predictor, and makes clear why the memristors and one-hop ESNs are so difficult
to tell apart. The correlation distances for each prediction are: 0.13638 for the discrete ESN;
1.30299 for the one-hop ESN; and 0.62263 for the memristor reservoir. The closer the two
curves follow one another, the smaller the correlation distance between them.

5.4 Other approaches

The above results paint an unfortunate picture for homogeneous neuromorphic reservoirs
attempting to serve as machine learning systems. Because of this, we now turn to ways
around this problem. Several paths forward exist, and below we evaluate the strengths and

42

50 100 150 200 - 50 100 150 200 - 50 100 150 200

(a) Discrete ESN (b) Onehop ESN (c) Memristor Reservoir

Figure 5.4: The predicted Mackey-Glass curves, blue (dark grey), plotted against
the true curves, green (light grey), for each type of reservoir.

0.4

0.2

0.0F

Current

—0.2

—04FF

-1.0 -0.5 0.0 0.5 1.0
Voltage V'

Figure 5.5: The “I-V” hysteresis from an ESN neuron. Note the lack of pinch through
the origin.

weaknesses of each. These range from systems we know perform well, through to ideas that
have not yet been attempted, but offer hope that this hardware will still be useful.

An iconic part of memristive hardware such as memristors and atomic switches is the
pinched hysteresis, which we presented back in Figure[2.4] This plot is generated by applying
voltage as a sine wave and measuring the response current. If we consider a similar plot
for ESNs relating input and output together, we can generate the curve in Figure 5.5] An
important distinction between this curve and the hysteresis seen in memristive components
is the lack of a pinch through (0,0). The physical interpretation for this is interesting, in
that we can read it as when there is no input voltage there is still current flowing through
the network. This is quite different to any of the components we have looked at so far,
but is not an unreasonable phenomenon. In fact, such a curve is exactly the same kind of
hysteresis we would observe from a capacitor or inductor. Using these components instead
of the memristive components we have here may produce different results because both are
able to act as a delay mechanism.

Alternatively, instead of trying to fix the discrete time problem, we can consider whether
it is even a concern. Because of the drawbacks of homogeneous networks with discrete time,
we can instead use them to solve problems with no time dependence. One of the largest
classes of such a problem is graph search, having applications in almost every problem we
have attempted to solve. The behaviour of memristors and atomic switches suggests that
these networks could perform parallel path search significantly faster than we can currently
achieve in software.

As mentioned at the beginning of this chapter, we are able to recreate the maze-solving
work by |Pershin and Di Ventral [29]. However, this approach does have a significant drawback—
structure. The layout of the hardware is dictated by the problem. Although there are ways
around this, such as the ability to turn off certain paths in software when describing the prob-

43

lem, the underlying issue is that the board needs to be a regular—or at least predictable—grid.
This is not the case with the hardware from the NRG, as one major benefit of their approach
is the random self-assembly.

Because most of the issues with the neuromorphic networks identified above are tied to the
fact that they are homogeneous, the next obvious step would be to work with heterogeneous
networks instead. Rather than having just memristors or atomic switches in the reservoir,
include digital neurons as well. These could be of varying complexity, from simple perceptron-
style neurons through to leaky integrate-and-fire models, the latter of which are used in the
standard liquid state machine formulation by Maass et al.| [25].

Again, this change is not without its downsides. If digital neurons are introduced into the
network, we must question what value the memristors and atomic switches have in learning—
if adding neurons makes all the difference, why not have just neurons? Additionally, random
assembly again becomes difficult. If we need to place these digital neurons in the network, can
we still rely on stochastic depositions to generate suitable reservoirs? Such questions make it
difficult to assess the future of memristors and atomic switches in heterogeneous reservoirs.

All of these ideas continue to link back to the concept of reservoir computing. But by
changing this assumption we can change the designs that we can have. There are two major
non-reservoir approaches that we can take: pre-training single-purpose neural networks, or
neural networks with variable resistors as weights. Again, all the following discussion works
against random assembly, but such discussions must be had to provide a thorough overview
of avenues forward from here.

Two key reasons for moving neural networks to hardware are speed and energy efficiency.
Neither of these demand that the neural network be better than current designs, nor that it
be a general purpose learner in the sense that it could learn anything. Often when we create
neural networks, they are feed-forward, and trained for a single purpose and then left as is
until the requirements change. Thus we have to ask, if we only plan on training it once, why
does this have to be done in hardware? By first building the neural network in software and
translating that same network in to hardware we potentially get all the benefits of hardware
neural networks with none of the difficulties of self-updating hardware. Having specifically
designed hardware would be beneficial for large scale work where the same neural network is
used thousands if not millions of times.

If a neural network does need to be updated frequently, then this train-once approach
is clearly not suitable. Instead, rather than setting the resistors’ resistance at manufacture,
construct the network from software-controlled variable resistors. Such a network could then
be trained in a combination of hardware and software, and then run entirely in hardware,
bringing the benefits of both software and hardware together.

If we consider the memory component of reservoir neural networks important, we can
instead consider moving to a model hinted to by |Ceriansky and Makulal where there is an
explicit delay mechanism in front of the reservoir storing the state, rather than the network
itself [6]. Such a delay mechanism would trivially be controlled in software, and although this
would remove the infinite memory so appealing in ESNs, a sufficiently large delay mechanism
would render this point moot.

44

Conclusion

“The end of all our exploring will be to arrive where we
started and know the place for the first time.”
— T. S. Eliot

This project spans physics, statistics, mathematics, and computer science, drawing on work
from each of these fields. We present contributions of value both to physics and engineering by
helping to guide future research and development of hardware, as well as computer science and
in particular artificial intelligence, by identifying the key components of reservoir computing
that were otherwise not apparent.

6.1 Summary

A fundamental part of this project was to produce a sufficiently accurate simulator of the
atomic switch network hardware produced by the Nanotechnology Research Group at the Uni-
versity of Canterbury. This work was helped by existing code from [Fostner and Brown| but
significant rewriting occurred in attempts to improve the efficiency, speed, and maintainabil-
ity of the codebase. Although this does mean moving away from Matlab, the resulting blend
of Python, SciPy, and Fortran—languages already established in the science community—is
equally approachable and should serve as a solid foundation for future work.

The most significant contribution in the simulations was the development of the statistical
generation method. Rather than spending time constructing the boards out of individually
simulated particles, we present a method to generate the board in a fraction of the time by
drawing the board parameters from probability distributions modelled on existing data. The
result is a board that is appropriate for simulations without the time-intensive deposition
process, enabling rapid iteration and larger board sizes.

Because of the design of the simulations, we allow arbitrary tunnels in our network,
meaning that the simulations are not restricted to the hardware components we had in mind
when implementing them. Thus further work exploring ideas such as capacitive networks or
inductor networks is viable, and potentially time-inexpensive due to the limited amount of
new code necessary.

Once the simulations were working, the challenge became producing a reservoir neural
network using them as the reservoir. We present a modular framework for building reser-
voir learners, where each component can be swapped in or out quickly, enabling a rapid-
prototyping approach to development. This system enabled us to produce learners in a wide
variety of configurations, so we could see what works, and what doesn’t. This is important
because such large homogeneous neuromorphic reservoirs are rare in the research, so “ideal”
parameters are difficult to find.

45

Due to the failure of the neuromorphic reservoirs to successfully learn, we were driven
to find the underlying cause. By systematically restricting the reservoir in an ESN, we were
able to identify four key sources of learning: leaking, loops, cycles, and discrete time. While
leaking is a simple addition to any network, the other three are problematic in homogeneous
networks of fundamental circuit components. By considering individually and in combination
what removing these features would do to the reservoir, we can produce a picture of how a
reservoir operates and the underlying assumptions and requirements.

Consider first the loops and cycles present in a reservoir. When both are removed as in
a feed-forward ESN, there is a notable change in the network in the form of losing “infinite
memory.” But by removing only a single feature of loops and cycles, the network is able
to maintain infinite memory, and with only minor alterations we are able to simulate either
loops or cycles using the other. This result means that adding both features is not necessary,
reducing the potential complexity for hardware manufacturers.

Finally we identified the most important feature of a reservoir—discrete time. Without
discrete time, the reservoir is essentially flooded with eternal history of a single state, and
any knowledge of the previous state is “drowned out” by the new information. This result
leads us to believe that a reservoir made solely of fundamental circuit components is limited
in its applicability as a reservoir, and instead efforts should be directed towards alternative
approaches such as networks with digital neurons or explicit hardware delay mechanisms.

6.2 Limitations

Although we have strived to be thorough, any project of this size will inherently be limited
by both time and scope of questioning. As such there are questions that we have been unable
to address fully, or have been unable to pursue as deeply as we would wish.

A concern that has risen more than once during this project was the suitability of Kirch-
hoff’s laws. Like any physical law, Kirchhoff’s laws come with their own set of assumptions
that must be adhered to in order for the results to still be meaningful. One if these is the
“lumped element” assumption, which is where each component is assumed to be uniform, and
the timescales at which the electromagnetic waves propagate is significantly smaller than the
timescales of interest. As became clear when the discrete-time memory factor was discov-
ered, we may well need to work on the timescales of electromagnetic propagation. Present
hardware is unable to switch at the speeds required (in the order of picoseconds), but even if
it were the simulations developed here are entirely unsuitable.

Two other concerns present themselves in the statistics presented. The first is small
sample sizes. Although we have endeavoured to make the simulations as efficient and fast
as possible, we still have to perform a large number of calculations while running up against
an unfortunately large complexity. This means that the sample sizes are smaller than we
would like, although because the results are so clear-cut we do not feel that larger sample
sizes would have any impact on the findings, only on the confidence in these results.

Similarly, the number of parameters we have tested is less than ideal. Although we have
presented a number reservoir sizes over a number of tests, more work is suggested in finding
the ideal balance of parameters such as the leaking rate and the normalisation constant.
With more time these concerns can be addressed, and again they are unlikely to change the
underlying result, only improve our confidence in the results presented.

46

6.3 Future work

Like any research, we have generated as many questions as we have answered. Some of these
are of immediate interest and a direct development of the work here, while others are more
long-term goals of interest to the field in general. We have discussed some of these ideas in
more detail in Chapter

Although the work here has focused on memristors and atomic switches (and resistors),
there are other potentially suitable components. When considering the plot of an ESN neu-
ron in Figure 5.5 we see hysteresis not unlike that of a capacitor or inductor. Using such
components for neuromorphic computing would be an interesting avenue for future research,
as capacitors in particular may be able to act as a delay mechanism in the network and
overcome some of the time difficulties.

Alternatively, rather than trying to add state to the reservoir, we can explicitly add
state to the input. Although this is not ideal, we can certainly still reap the benefits of a
hardware neural network even if we do not gain the power of a reservoir neural network.
Such explicit delay mechanisms will also mean that traditional feed-forward neural network
training algorithms such as back-propagation are suitable, meaning that training is simplified.

Of course, there is no reason that we are restricted to homogeneous networks in the
first place. By allowing networks of heterogeneous components, notably some type of digital
neuron, we are able to overcome many of the issues outline in this report. Because the neurons
will be able to act as sources and sinks of energy, or even delay the propagation of energy
through the network, the restrictions on cycles, loops, and discrete time are all removed.
Thus by adding digital neurons to the network we may be able to reach the power we want
in neuromorphic reservoirs. Note that the simulation here is incapable of generating these
kinds of networks.

Another area of exploration that we did not have much time to investigate was alternative
information encodings. This project uses the naive encoding from one input value to one
voltage level, but this is not the only possible encoding. An alternative representation we
considered was using sine waves and varying the amplitude as the input level, or encoding the
input as frequency. Both of these input encodings require an alternating current simulation,
which we do not have. The question then becomes how this would be stored as state for the
network, leaving many avenues for future research.

In this project, we have demonstrated how we can reduce an ESN to have the same
predictive power as a memristor reservoir. The question remains as to whether the same
approach can be applied in the other direction, to try and add features to a memristor
reservoir so that it has the same learning power as an ESN. Early tests show that this is
a nontrivial exercise due to the breakdown of Kirchhoff’s laws when attempting to enforce
discrete time. Further research would be an interesting and informative challenge to explore
how this could be done.

47

Bibliography

1]

2]

3]
4]

[5]

6]

7]

8]

19]

[10]

[11]

[12]

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G. J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537—
1557, October 2015.

A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono, A. Z. Stieg, and
J. K. Gimzewski, “Neuromorphic atomic switch networks,” PLoS ONE, vol. 7, no. 8, pp.
1-8, August 2012.

C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

J. Biirger and C. Teuscher, “Variation-tolerant computing with memristive reservoirs,”
in IEEE/ACM International Symposium on Nanoscale Architectures, July 2013, pp. 1-6.

J. Biirger, A. Goudarzi, D. Stefanovic, and C. Teuscher, “Hierarchical composition of
memristive networks for real-time computing,” in Proceedings of the 2015 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH15). 1EEE, July
2015, pp. 33-38.

M. éerﬁansky and M. Makula, “Feed-forward echo state networks,” in Proceedings. 2005
IEEE International Joint Conference on Neural Networks, 2005., vol. 3, July 2005, pp.
1479-1482.

M. Certiansky and P. Tito, Artificial Neural Networks — ICANN 2007: 17th Interna-
tional Conference, Porto, Portugal, September 9-13, 2007, Proceedings, Part I. Berlin,
Heidelberg: Springer Berlin Heidelberg, September 2007, vol. 4668, ch. Comparison
of Echo State Networks with Simple Recurrent Networks and Variable-Length Markov
Models on Symbolic Sequences, pp. 618-627.

L. O. Chua, “Memristor — the missing circuit element,” IEEE Transactions on Circuit
Theory, vol. 18, no. 5, pp. 507-519, September 1971.

S. Fostner and S. A. Brown, “Neuromorphic behavior in percolating nanoparticle films,”
Phys. Rev. E, vol. 92, no. 5, p. 052134, November 2015.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,” Pro-
ceedings of the IEEE, vol. 102, no. 5, pp. 652-665, May 2014.

M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor crossbar-
based neuromorphic computing system: A case study,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 10, pp. 1864-1878, October 2014.

M. Hutter, Univeral Artificial Intelligence. Springer, 2005.

48

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

G. Indiveri and S.-C. Liu, “Memory and information processing in neuromorphic sys-
tems,” Proceedings of the IEEFE, vol. 103, no. 8, pp. 13791397, August 2015.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings,
T. Delbruck, S.-C. Liu, P. Dudek, P. Héfliger, S. Renaud, J. Schemmel, G. Cauwen-
berghs, J. Arthur, K. Hynna, F. Folowosele, S. SAIGHI, T. Serrano-Gotarredona, J. Wi-
jekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, no. 73, pp. 1-23, May 2011.

G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis,
“Integration of nanoscale memristor synapses in neuromorphic computing architectures,”
Nanotechnology, vol. 24, no. 38, p. 384010, September 2013.

H. Jaeger, “The “echo state” approach to analysing and training recurrent neural net-
works,” German National Research Institute for Computer Science, GMD Report 148,
January 2001.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4, pp.
1297-1301, March 2010.

Z. Konkoli and G. Wendin, “A generic simulator for large networks of memristive ele-
ments,” Nanotechnology, vol. 24, no. 38, p. 384007, September 2013.

Z. Konkoli and G. Wendin, “On information processing with networks of nano-scale
switching elements,” International Journal of Unconventional Computing, vol. 10, no.
5/6, pp. 405-428, November 2014.

M. S. Kulkarni, “Memristor-based reservoir computing,” Master’s thesis, Portland State
University, 2012.

M. S. Kulkarni and C. Teuscher, “Memristor-based reservoir computing,” in 2012
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), July
2012, pp. 226-232.

R. Legenstein and W. Maass, “Edge of chaos and prediction of computational perfor-
mance for neural circuit models,” Neural Networks, vol. 20, no. 3, pp. 323-334, April
2007.

B. Linares-Barranco, T. Serrano-Gotarredona, L. A. Camufias-Mesa, J. A. Perez-
Carrasco, C. Zamarreno-Ramos, and T. Masquelier, “On spike-timing-dependent-
plasticity, memristive devices, and building a self-learning visual cortex,” Frontiers in
Neuroscience, vol. 5, no. 26, pp. 1-22, March 2011.

M. Lukosevicius, Neural Networks: Tricks of the Trade: Second Edition. Springer, 2012,
vol. 7700, ch. A Practical Guide to Applying Echo State Networks, pp. 659-686.

W. Maass, T. Natschlager, and H. Markram, “Real-time computing without stable states:
A new framework for neural computation based on perturbations.” Neural Computation,
vol. 14, no. 11, pp. 2531 — 2560, November 2002.

C. Mead, Analog VLSI and Neural Systems, ser. Addison-Wesley VLSI systems series.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., January 1989.

49

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” Commun.
ACM, vol. 57, no. 6, pp. 13-15, June 2014.

Y. V. Pershin and M. Di Ventra, “Experimental demonstration of associative memory
with memristive neural networks,” Neural Networks, vol. 23, no. 7, pp. 881-886, Septem-
ber 2010.

Y. V. Pershin and M. Di Ventra, “Solving mazes with memristors: A massively parallel
approach,” Phys. Rev. E, vol. 4, no. 84, p. 046704, March 2011.

D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, “Learning with memristive devices:
How should we model their behavior?” in 2011 IEEE/ACM International Symposium
on Nanoscale Architectures, June 2011, pp. 150-156.

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device variations in a
spiking neural network with memristive nanodevices,” IEEE Transactions on Nanotech-
nology, vol. 12, no. 3, pp. 288-295, May 2013.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Pearson,
2010.

S. Saighi, C. G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf, J. Tomas, J. Grol-
lier, S. Boyn, A. Vincent, D. Querlioz, S. La Barbera, F. Alibart, D. Vuillaume, O. Bich-
ler, C. Gamrat, and B. Linares-Barranco, “Plasticity in memristive devices for spiking
neural networks,” Frontiers in Neuroscience, vol. 9, no. 51, pp. 1-16, March 2015.

A. Sattar, S. Fostner, and S. A. Brown, “Quantized conductance and switching in per-
colating nanoparticle films,” Physical Review Letters, vol. 111, no. 13, p. 136808, June
2013.

R. F. Service, “The brain chip,” Science, vol. 345, no. 6197, pp. 614-616, August 2014.

R. A. Serway, J. W. Jewett, K. Wilson, and A. Wilson, Physics, Asia-Pacific ed.,
M. Veroni, Ed. Cengage Learning, 2013, vol. 2.

H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg, and
J. K. Gimzewski, “A theoretical and experimental study of neuromorphic atomic switch

networks for reservoir computing,” Nanotechnology, vol. 24, no. 38, p. 384004, September
2013.

A. Smith, “Simulating percolating superconductors,” Master’s thesis, University of Can-
terbury, 2014.

J. E. Steif, “A mini course on percolation theory,” 2009.

A. 7. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono, and J. K.
Gimzewski, “Emergent criticality in complex turing b-type atomic switch networks,”
Advanced Materials, vol. 24, no. 2, pp. 286-293, January 2012.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor
found,” Nature, vol. 453, no. 7191, pp. 80-83, May 2008.

W. S. Zhao, G. Agnus, V. Derycke, A. Filoramo, J.-P. Bourgoin, and C. Gamrat, “Nan-
otube devices based crossbar architecture: toward neuromorphic computing,” Nanotech-
nology, vol. 21, no. 17, p. 175202, April 2010.

50

Appendices

51

Full Simulator Calculations

First we present the two important methods from the Python MemChip class. References to

fastchip are calls to Fortran, the source for which is given afterwards.

Python

def write(self, input matrix: Iterable) —> Iterable:

T Encode the input_ matriz as voltages for the mneural
network to process, and feed it to the network.
Fach row is a new input vector.

nmnn

rows, = input matrix.shape

conductance result = scipy.zeros(rows)

current result scipy .zeros ((rows, self.output count))

sensors_result

scipy.zeros ((rows, (MemChip.sensor grid

width =*

MemChip. sensor grid height)))

for t, v in enumerate(input_ matrix):

current matrix, , conductance = self. feed through network(v)

print (current_matriz)
if self. sensor grid enabled:
sensor result = fastchip.read sensor grid(
self .sensor grid,
current matrix,

MemChip. sensor grid width * MemChip.sensor grid height)

else:
sensor _result = 0
currents = scipy .sum(
current matrix [:, scipy.array([—(i+1) for i in
range(self.output
axis=0)
currents = scipy. fliplr (currents)
currents = scipy.ravel(currents.sum(axis=0))
conductance result[t] = conductance
current result[t] = currents
sensors _result[t] = sensor result

gc.collect ()

count)|)],

return (conductance result, current result, sensors result)

def feed through network(self, voltages: Iterable) —> Tuple[scipy.matrix,

" Given an input, run it through the network

and calculate the state of the network because of it.
nmnn

52

scipy . matrix ,
float |:

for in range(self.tunnel.cycles):
conductance matrix = self.structure.read()
current shell = self.current matrix.copy ()
Create the G Matrix
g matrix = fastchip.g matrix(conductance matrix,
current shell)
Fill in the wvoltage vector
v_vec = self.voltage vector.copy()
v_vec[v_vec > 0] = voltages
Solve the simultaneous equations from [38].
try:
out vec = scipy.linalg.solve(g matrix,
v_vec)
except Exception as e:
Does not stop exception, but shows useful information
print (v_vec|self.number of groups:
self .number of groups+self.input count])
print (g matrix)
if not scipy.isfinite (g_matrix).all():
Show both infinite and NaN values
oddities = scipy.logical not(scipy.isfinite (g_matrix))
print (g_matrix | oddities|)
print (self.structure.sizes)

raise e

voltage matrix = scipy.matrix(fastchip.voltage matrix(
out_vec[: self .number of groups],
self .structure.sizes = scipy.inf))

current matrix = scipy.matrix(fastchip.current matrix(

voltage matrix,
conductance matrix ,

self.structure.sizes = scipy.int))
self.structure.apply(voltage matrix, current matrix)
n = self.number of groups
if scipy.absolute(voltages).all() < EPSILON:
conductance = scipy.nan
else:
conductance = (scipy.sum(scipy.absolute (
out_vec|n:nt+self.input count])) /
scipy . absolute (voltages))
if hasattr(conductance, " len "): # Dirty, but useful
conductance = scipy .nan

return (current matrix, voltage matrix, conductance)

Fortran

subroutine read sensor grid(sensor grid, current matrix, size, iw, ih, result)
! Read the sensor grid, averaging the current over all
! the tunnels that pass through each grid sensor.
! This is still the slowest part of the code, but being
! in Fortran certainly speeds it up.
implicit none
integer , parameter :: double = selected real kind(15)
integer , parameter :: long = selected int kind(15)

93

integer (kind=long), intent(in) :: size, iw, ih

real (kind=double), dimension(iw, ih), intent(in) :: sensor grid
real (kind=double), dimension(iw, ih), intent(in) :: current matrix
real (kind=double), dimension(size), intent(out) :: result

integer (kind=long) :: n, i, j, cnt, one

real (kind=double) :: total

one = 1

ISOMP PARALLEL DO PRIVATE(n, i, j, cnt, total)

do n =1, size
total = 0
cnt = 0
do j = 1, ih
do i — j, iw
if (semsor grid(i, j) .eq. n) then
total = total + current_ matrix (i, j)
cnt = cnt + 1
end if
end do
end do
result (n) = total / max(one, cnt)
end do

!$OMP END PARALLEL DO
end subroutine read sensor grid

subroutine g matrix(conductance matrix, current matrix, gn, in, result)
! Generate the G matriz based on the conductance matriz
! and the skeleton "current matrizc”.
implicit none

integer , parameter :: double = selected real kind(15)

integer , parameter :: long = selected int kind(15)

integer (kind=long), intent(in) :: gn, in

real (kind=double), dimension(gn, gn), intent(in) :: conductance matrix
real (kind=double), dimension(in, in), intent(in) :: current matrix
real (kind=double), dimension(in, in), intent(out) :: result

real (kind=double), dimension(gn) :: diagonals

integer (kind=long) :: i

diagonals = sum(conductance matrix, dim=2)

result = current matrix

result (1:gn, l:gn) = conductance matrix
!$OMP PARALLEL DO

do i =1, gn

result (i, i) = —diagonals (i)

end do
!$OMP END PARALLEL DO
end subroutine g matrix

subroutine voltage matrix(voltages, distances, n, result)
! Calculate the wvoltage drops across the mnetwork.

o4

! If the distance across a jump is infinite ,
! the wvoltage drop will be mothing

! (because conductance will have been zero)
use ieee arithmetic

implicit none

integer , parameter :: double = selected real kind(15)
integer , parameter :: long = selected int kind(15)
integer (kind=long), intent(in) :: n

real (kind=double), dimension(n), intent(in) :: voltages
logical , dimension(n, n), intent(in) :: distances

real (kind=double), dimension(n, n), intent(out) :: result
integer (kind=long) :: i, j

!$OMP PARALLEL DO
do i =1, n
do j =i, n
result(j, i) = abs(voltages(j) — voltages(i))
result (i, j) = result(j, i)
end do
end do
!$OMP END PARALLEL DO
where (distances) result = 0
end subroutine voltage matrix

subroutine current matrix(voltage matrix, conductance matrix, sizes, n, result)
! Calculuate the currents in the network.
I If the size of a gap is infinite , the current
! will be zero because the conductance will be zero.
use ieee arithmetic
implicit none

integer , parameter :: double = selected real kind(15)

integer , parameter :: long = selected int kind(15)

integer (kind=long), intent(in) :: n

real (kind=double), dimension(n, n), intent(in) :: voltage matrix
real (kind=double), dimension(n, n), intent(in) :: conductance matrix
logical , dimension(n, n), intent(in) :: sizes

real (kind=double), dimension(n, n), intent(out) :: result

result = voltage matrix % conductance matrix

where (sizes) result = 0

end subroutine current matrix

95

Learner Parameters

The parameters below were used when the experiments were run.

If a parameter is not

applicable to a particular learner, it should not be considered present. For example, spectral

radius does not apply to neuromorphic reservoirs.

Fostner and Brown| Replications

Parameter Current Spikes Conductance Curves
Width 200 100
Height 200 100
Coverage 0.65 0.65
Tunnel Switch Switch
Voltage range OVtolV OVtolV
Voltage step size 0.025V 0.0001V
Voltage cycles 5 up, 5 down 1
Probability of switch-up 0.1 0.01, 0.1, 0.8
Probability of switch-down 0 0

MNIST Database

Parameter Value
Input dimension 64
Output dimension 10
Reservoir size 100, 200, 500
Leaking rate 1
Regularisation 1x10°8
Type ESN, Memristor, Switch, Resistor
Spectral radius 0.5
Sparsity 0.75

o6

Mackey-Glass Learners Test One

Parameter Value
Input dimension 1
Output dimension 1
Reservoir size 100, 200, 500
Leaking rate 0.3
Regularisation 1x10°8
Type ESN, Memristor, Switch, Resistor
Spectral radius 0.5
Sparsity 0.75

Mackey-Glass Learners Test Two

Parameter

Input dimension
Output dimension

Reservoir size 50, 100, 200, 500, 750, 1000, 1500, 2000
Leaking rate

Regularisation 1x1078
Type Feed-forward ESN, Memristor, One-hop ESN

Spectral radius
Sparsity

Mackey-Glass Test Conditions

Parameter Value

17
10
0.2
0.1

= @ 3 "

o7

Full Data Analysis

MNIST Database

In the following tables, precision is the left number and recall is the right number.

100-neuron learners

Digit ESN Memristors Atomic Switches Resistors
0 0.9454 0.9773 0.9131 0.9943 0.8963 0.9841 0.9127 0.9909
1 0.8954 0.8802 0.8630 0.8736 0.8579 0.8297 0.9119 0.8681
2 0.9544 0.9372 0.9629 0.9105 0.9325 0.8942 0.9376 0.9256
3 0.8914 0.8363 0.9006 0.8319 0.8948 0.8264 0.9025 0.8187
4 0.9592 0.9109 0.9579 0.9000 0.9374 0.8685 0.9477 0.8783
5 0.8686 0.9011 0.8974 0.9352 0.8623 0.8692 0.8821 0.9132
6 0.9547 0.9824 0.9630 0.9824 0.9289 0.9868 0.9412 0.9769
7 0.9340 0.9191 0.9262 0.9303 0.9074 0.9191 0.9340 0.9315
8 0.8587 0.8034 0.8519 0.8591 0.8559 0.7886 0.8423 0.8295
9 0.7830 0.8717 0.8898 0.8902 0.7607 0.8446 0.8204 0.8826

Mean 0.9045 0.9020 0.9126 0.9108 0.8834 0.8811 0.9032 0.9015

200-neuron learners

Digit ESN Memristors Atomic Switches Resistors
0 0.9515 0.9636 0.9321 0.9193 0.8954 0.9716 0.9389 0.9943
1 0.8940 0.8659 0.8503 0.7714 0.8469 0.7549 0.8687 0.8582
2 0.9622 0.9244 0.9304 0.7756 0.8892 0.8756 0.9469 0.8965
3 0.9017 0.8275 0.9003 0.7846 0.8086 0.7802 0.8983 0.8253
4 0.9445 0.8989 0.9476 0.8783 0.9294 0.8717 0.9445 0.8750
5 0.8639 0.9121 0.8987 0.8505 0.8360 0.8330 0.8841 0.9022
6 0.9372 0.9813 0.9504 0.9418 0.9179 0.9484 0.9410 0.9681
7 0.9065 0.8966 0.8892 0.8640 0.8911 0.8820 0.9223 0.9034
8 0.8453 0.8114 0.7231 0.8716 0.7945 0.7580 0.8161 0.8409
9 0.7981 0.8946 0.8568 0.7880 0.7217 0.8250 0.8152 0.8826

Mean 0.9005 0.8976 0.8879 0.8445 0.8531 0.8500 0.8976 0.8947

The 500-neuron table is in Chapter |5, page

o8

	Abstract
	Contents
	List of Symbols and Notation
	Introduction
	Motivation
	Goals
	Organisation

	Background & Literature Review
	Machine learning
	Reservoir neural networks
	Neuromorphic computing
	Memristors and atomic switches
	Related work

	Simulating Novel Hardware
	Percolation networks
	Kirchhoff's laws
	Tunnels
	Putting it together

	Constructing a Reservoir
	Abstraction
	Readout weights
	Testing and configuration
	Datasets
	Reservoirs
	Testing

	Comparisons and Results
	Replication
	Results
	Memory
	Leaking
	Cycles
	Loops
	Discrete time steps

	Other approaches

	Conclusion
	Summary
	Limitations
	Future work

	Bibliography
	Appendices
	Full Simulator Calculations
	Learner Parameters
	Full Data Analysis

