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Abstract. A cognitive theory of the interpretive structure of visual representa-
tions (RIST) was proposed by Cheng (2020), which identified four classes of 
schemas that specify how domain concepts are encoded by graphical objects.  A 
notation (RISN) for building RIST models as networks of these schemas was also 
introduced.  This paper introduces common RIST/RISN network structures – id-
ioms – that occur across varied representations.  A small-scale experiment is pre-
sented in which three participants successfully modelled their own interpretation 
of three diverse representations using RIST/RISN and idioms.   
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1 Introduction 

To advance the study of Diagrams, and visual representations in general, the field re-
quires a comprehensive cognitive account of how readers of representations interpret 
representations. Such a theory is needed for multiple reasons.  

(A) Although it is tempting to assume, say, for the sake of theoretical analysis, that 
a representation has one ‘correct’ reading, this mask the full diversity of the readers’ 
interpretations. It is unlikely that two readers of a given representation will naturally 
construct identical interpretations. So, some approach to systemically describe those 
varied interpretations could be valuable; for example, the mastery of visual representa-
tions is critical in STEM subjects, so there is pedagogic utility in being able to charac-
terise what differs between novice and competent readers of a target representation.  

(B) The particular content of any given topic can be encoded in quite distinct repre-
sentations, with dramatic differential impacts on problem solving and learning across 
those representations (e.g., [3], [10], [22]). Thus, an approach to estimating the relative 
cognitive benefits of alternative interpretations of representations could be useful. For 
instance, such measures could be deployed in the development of automated systems 
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to select effective representations tailored to individuals and classes of problems (e.g., 
[8], [20]).  

(C) Related to the previous point, but more fundamental, is the issue of how even to 
compare representations with substantially different formats that encode the same in-
formational content. Conventionally, comparison of alternative representations in-
volves laborious task analyses (e.g., [2], [3]) or cognitive modelling (e.g., [10], [11]), 
or empirical studies (e.g., [2], [3], [22]). Instead, an approach at an intermediate level 
of abstraction could obviate the toil of ultra-fine-grained analyses and costly experi-
ments. The approach will require the formulation of generic, format-independent, the-
oretical constructs that are applicable to all representations. Such constructs could serve 
as “natural” explanatory entities for interpretations. For these reasons, a cognitive the-
ory of the structure of interpretations of representations is a worthy goal. 

A contrast with linguistics is instructive. Linguistics has produced accounts of the 
interpretation of natural language which specify cognitive structures and processes of 
meaning extraction from verbal representations (e.g., [9], [16]). Many accounts of the 
nature of diagrams address structure (e.g., [10], [17], [18], [21], [22]) but comparatively 
less attention has been paid to how individuals interpret or comprehend diagrams ([11], 
[12]).  

Our purpose here is to take the next step towards a general cognitive theory of the 
interpretation of representations, by testing the “sketch” of the theory developed by 
Cheng [4], which we will call Representational Interpretative Structure Theory (RIST). 
The RIST sketch proposed that the human interpretation of representations deploys four 
elementary types of mental schemas. Critically, the schemas coordinate information 
about concepts from a target topic with information about how those concepts are en-
coded in the graphical components of the representations. To operationalise RIST, 
Cheng [4] also outlined a graphical notation for constructing models of interpretations 
under RIST, which we will call RISN (RIS Notation). RIST and RISN1 are described in 
Section 2 of this paper. 

In Section 2 we introduce RIST and RISN, and take the opportunity to increase the 
precision of the definition of RIST’s components and to more tightly specify how RISN 
captures particular interpretive constructs. In Section 3, we introduce and describe pat-
terns of elementary schemas – idioms – that commonly occur in interpretations, which 
we discovered in RIST/RISN networks across diverse representations. Idioms have the 
potential to meet the requirement that RIST identifies “design patterns” as standard 
interpretive structures for constructing RISN models [4]. As noted above (reason A), 
different readers of a given representation will naturally construct alternative interpre-
tations of that representation, so the requirement that RIST accounts for, and for RISN 
to model, alternative interpretations is investigated in a small-scale experiment in Sec-
tion 4. Drawing these advances together, in Section 5, we will briefly consider how 
RIST and RISN may yield estimates of the cognitive cost of making alternative inter-
pretations of a representation (reason B), and how RIST and RISN may provide a neu-
tral approach to the cognitive analysis of representations that is independent of the par-
ticular format of representations (reason C). 

 
1 Pronounced like “wrist” (/ˈɹɪst/) and “risen” (/ˈɹɪzən/), respectively. 
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Fig. 1. William Playfair’s line graph, in Commercial and Political Atlas, 1786. 

2 Representation Interpretation Theory/Notation – 
RIST/RISN 

To introduce RIST and RISN [4], we adopt a running example of the analysis of the 
interpretation of a famous diagram – Playfair’s line graph, Fig. 1. Following Cheng’s 
[4] analysis guidelines, Fig. 2 annotates the important graphical components of Play-
fair’s line graph, and Fig. 3 is a RISN model of the graph2. 

2.1 Four schemas 

RIST hypothesises that four schemas underpin our ability to interpret representations3. 
The fundamental purpose of these schemas is to tightly coordinate concepts from the 
target topic with the graphic objects in the representation that stand for those concepts. 
Networks of these schemas encode the rich hierarchical structure of the encoding rela-
tions that constitutes an interpretation of a representation. RISN is a system for model-
ling such networks; Fig. 3 is an example. At the highest level is the Representation 
schema, capturing an entire representation. R-Scheme schemas capture intermediate 
level sub-structures. R-Dimension schemas deal with varying quantities; they describe 

 
2  Fig. 3 was drawn in a web browser tool, RIS Editor (RISE), that was specifically developed 

for creating RISN models. The tool will be presented in a paper to follow. 
3  A schema is a mental knowledge representation for a category defined by a set of attributes 

(slots) for which a particular instance of a concept is assigned values (fillers); e.g., [16]. 
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R-symbol domains. The R-symbol schema identifies the ‘unitary’ concepts of the target 
topic. Their depiction in RISN models is shown in Fig. 4 and examples are scattered 
throughout Fig. 3. Let us consider them in turn, in reverse order.  

 
Fig. 2. Playfair’s line graph as annotated for modelling (by R1). 

 
Fig. 3. Model of the interpretation of Playfair’s line graph (by R1). Colour shadings are for ref-

erence and not part of the model. 

R-symbols4. R-symbols are the ‘fixed’ elements of a representation. Their role is to 
code the association of concept with the graphic object representing it. In RISN, R-

 
4R-symbol supersedes Token used in [4] for reasons of notational and theoretical consistency.  
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symbols are rounded rectangles, with labels identifying the concept and graphical ob-
ject (Fig. 4d). In Fig. 2, the overlaid annotations with labels beginning with a '‘T’ are 
instances of R-symbols, and these labels are written in the slots of the corresponding 
R-symbol icons in Fig. 3. The graphic object may also be described (e.g., altitude). For 
textual graphic objects, the text in quotes may be written in the R-symbol icons (e.g., 
“1770” in Fig. 3). Critically, through the structure of its R-symbol schema, RIST asserts 
the distinction between what is being represented, the concept, and what is it is being 
represented by, the graphical object: they should not be conflated. For example, in Play-
fair’s line graph the graphic object “80” on the y-axis, labelled T2.2 represents the con-
cept ‘£80,000’. 

 
Fig. 4. The four schemas as icons: (a) Representation; (b) R-Scheme; (c) R-Dimensions 

(S=quantity scale alignment); (d) R-symbol; (e) class R-symbol. 

R-Dimensions. This schema encodes concepts about attributes, features or dimensions 
of the topic that are variable in that they may be assigned alternative values. R-dimen-
sion concepts are more general than those encoded by R-symbols. These concepts con-
cern the variability of some feature or attribute of the topic. In the schema for R-dimen-
sions, RIST simultaneously distinguishes the concept of variable quantities from its 
graphic object whilst also declaring their association. R-dimensions are drawn as a tra-
pezium, with labels for the concept and graphic object, Fig. 4c. In the line graph model, 
Fig. 3, five global R-dimensions are identified: Year-D1 (x-axis); Money-D2 (y-axis); 
Trade type-D3 (z-axis for trade curves); Trade volume-D7 (area); Data point-D4.  

An R-dimension’s concept is analogous to a mathematical type: R-dimensions range 
over R-symbols. R-symbols belong to at least one R-dimension; e.g., the Year R-di-
mension possess R-symbols for individual or a group of actual year values. 

Given the underpinning role of quantity scales in inference, RIST requires that RISN 
models identify the quantity scale [19] for both the concept and the graphic object of 
each R-dimension. Whether each is a nominal, ordinal, interval or ratio scale is regis-
tered by a letter – N, O, I or R, respectively – appended to the concept and graphical 
object labels in the R-dimension icon (see Fig. 4c). Mismatches between concept and 
graph object quantity scales, which may hinder interpretation, are thus made apparent. 

R-Schemes. R-Schemes capture complex structures within the representations, from 
large structures that span the entire representation, to local structures that organize just 
a few R-symbols. While R-Dimensions collect many R-symbols of a similar kind, R-
Schemes are typically heterogeneous: they link together different R-Dimensions, R-
symbols, or other R-Schemes, into some larger structure. R-Schemes are drawn as a 
rectangle in RISN (Fig. 4b). The RISN model (Fig. 3) for the interpretation of Playfair’s 
graph (Fig. 1) has an overarching R-scheme composed of five R-dimensions.  

Topic
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Representations. At the highest level is the Representation schema. Representation 
schemas are drawn as lozenges (Fig. 4a). This schema defines a complete representation 
and a RISN model always has a Representation schema at its root. However, sub-Rep-
resentations can occur in other parts of a RISN model, when there is a distinct nested 
representation within a larger representation (see anchoring below). 

2.2 Linking schemas 

RIST conceptualizes interpretations of representations as rich hierarchical networks of 
relations among the four schemas. With the schemas defined, we can begin linking 
them together. RISN models must be connected. Here, we introduce a more precise 
definition of the three kinds of links proposed: hierarchy, anchoring, and equivalence. 

Hierarchy. This most fundamental link asserts when one schema is conceptually en-
closed by another. For example, R-symbols enclosed under R-Dimensions will repre-
sent a specific value from that R-dimension. The hierarchy link can be formed between 
any two schemas, with the following exceptions: 

─ The ‘child’ of a hierarchy link is never a Representation schema, because a Repre-
sentation schema stands for a complete representation (but see anchoring below). 

─ An R-symbol schema can only be the parent of another R-symbol schema, because 
they are the base-level components of RIST/RISN (but see anchoring below). 

─ An R-dimension schema cannot be the parent of an R-Scheme schema, because R-
dimensions only range over R-symbols. 

We notate hierarchy using a thin solid line (no arrow heads). The hierarchy link is di-
rected: the direction is indicated by connecting to the parent schema from below, and 
the child schema from above. Some subsequent properties of RISN models are: 

─ All schemas, except for the root Representation schema, must have at least one par-
ent schema. 

─ All schemas must have at least one child, except for R-symbol schemas and non-root 
Representation schemas: they are the ‘leaves’ of a RISN model.  

─ A schema may not be the parent of any schemas that are its ancestors – that is, RISN 
models are acyclic. However, a schema may have multiple parents, and so parallel 
paths may exist.  

Anchoring. Anchoring links denote a new substructure that exists as a direct result of 
the parent R-symbols. Anchoring is a rich relation where a new concept emerges. We 
denote anchoring using solid thin line, with a bullet terminal at the parent. The link is 
thus directed, with the direction being shown by the position of the bullet. The parents 
must be R-symbol schemas, but there is no restriction on the children except that they 
are not an ancestor of the parent – that is, anchors must not introduce cycles into the 
RISN model. For example, in Fig. 3 (left), the sequence of hierarchy and anchor rela-
tions from the D3 R-dimension through to the D5.1 R-symbol, via D4.2/3, D4.a and 
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D5, expresses the notion that export data points are identified by the export curve and 
that it is only meaningful to speak of a specific rate of change of the curve with refer-
ence to a particular data point. Anchoring is more than just a sub-R-symbol relationship, 
such as a segment of a line, or the digits in a number. 

A (sub-)Representation schema may be anchored to an R-symbol; for example, a 
Representation Schema for Hindu-Arabic numbers can be added to some of the leaf 
nodes in Fig. 3, if we wish to elaborate the inner workings of that numeration system.  

Equivalence. It is useful to register cases of repeated symbols for concepts (e.g., the 
two ‘x’ in x×2=x+3), because of their potential impact to the cognitive efficacy of a 
representation. Further, a single sophisticated concept in a representation may be en-
coded by quite different subnetworks of schemas in a RISN model; for instance, imag-
ine that the areas for trade against and in favour in Fig. 1 are equal. The equivalence 
link captures the ‘mental bookkeeping’ that occurs during such interpretations, in which 
the reader must hold in mind the relationships between different parts of the represen-
tation. It is not intended to capture “mathematical” equivalence – although it may do, 
if this is part of the mental bookkeeping. Equivalence links are undirected and repre-
sented by a thick, dashed line with no terminals. There are no restrictions on what can 
be connected via the equivalence relation, allowing cycles in RISN models.  

That completes the summary of RIST and RISN. We have outlined RIST’s “words” 
and “grammar” for composing “sentences” that express interpretations of representa-
tions. RIST makes strong claims about the fundamental mental knowledge structures 
we use to interpret representations (the four schemas) and how interpretation occurs 
(construction of networks of those schemas). In this paper, the adequacy of the theory 
has been enhanced by more rigorously specifying RIST’s components; in particular, 
the circumstances under which each type of link is applicable. Some of the ambiguity 
in Cheng’s original theory sketch [4] has been eliminated, which provides greater con-
straint on the permissible schema networks.   

3 Idioms: higher-order structures 

Consider an analogy. Chemical theory is successful because it identifies elements and 
has rules by which atoms may be composed into molecules, but moreover it provides 
general categories of structures and processes; benzene rings, alcohol groups, or multi-
bonded carbon atoms are substructures of organic molecules, each providing local in-
formation about the molecule as a whole. Similarly, we observe substructures of 
schemes within RIST models. Through many applications of RIST to diverse represen-
tations, both sentential and diagrammatic, we observed repeated substructures captur-
ing common ideas emerge naturally: we call these idioms. Idioms serve dual purposes: 
first, they are an aid to interpreting RISN models; second, they can serve as guides 
when building RISN models.  Three particularly common classes of idioms are intro-
duced and described here: collections, R-dimension idioms, and coordinate systems. 
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Fig. 5. Templates for (a) pick, (b) filter, (c) for-each, and (d) reduce. 

3.1 Collections 

We have found, frequently, that R-symbols are not just ‘one-off’ symbols within a rep-
resentation: there are many points on a chart, many regions in an Euler diagram, and so 
forth. To capture this regularity, we allow for class R-symbols, Fig. 4e. However, we 
might want to discuss R-symbols as a group, or talk in general about the R-symbols 
without specifying an R-symbol in the class. We define four idioms on collections of 
representations: pick, filter, for-each, and reduce. Some readers might note that these 
names were inspired by functional programming, and draw helpful analogies [1]. 

The simplest collection idiom is pick: a single R-symbol is extracted from the class 
of R-symbols. This idiom can identify a single R-symbol as being of particular interest 
in an interpretation.  We connect a new R-symbol(s) below the dimension and exclude 
it from the sibling class R-symbol, shown in Fig. 5a. An example in the Playfair’s line 
graph model is shown by the purple shading in Fig. 3 (and Fig. 9). 

When the model requires some subset of the R-symbol collection, we use the filter 
idiom. While all the R-symbols in a collection might belong to the same R-Dimension, 
that R-Dimension might be very general: sometimes, a specific subset is more useful in 
some context. In effect, this is a sub-R-Dimension, so is notated by introducing new 
sub-R-Dimensions below the original R-Dimension, Fig. 5b. The name of the filter id-
iom is inspired by the filter function common in programming languages: given a col-
lection of values, extract just the values that match some predicate. For example, in the 
orange shading in Fig. 3, if a modeller wanted to just talk about the ‘import data point’ 
then only this schema would have been drawn, and thus considered as a filter idiom. 

Often, some interpretation is true for all R-symbols in a class, regardless of which 
specific R-symbol is being considered. In RISN, we call this idiom for-each, Fig. 5c: 
any schemas under a class R-symbol in the model are true for all members of the class. 
We can draw analogy to the standard mathematical phrase ‘without loss of generality’: 
something true for every member of a set. For example, in the model of Playfair’s line 
graph, Fig. 3 (left), the anchoring of the ‘Export data’ class R-symbol under the ‘Year 
values’ class R-symbol expresses the idea that each year has an export data value. In 
functional programming, this would be a map. 

For the sake of clarity, class R-symbols merit further comment in the context of the 
for-each idiom. Class R-symbols are limited in how they connect to descendent sche-
mas: like single R-symbols, they connect either to sub-R-symbols, or via anchoring. 
We discussed both types of connection in Section 2. In both cases, they apply to each 
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individual concept included in the class R-symbol, not to the ‘class’ of R-symbols. For 
example, in Fig. 3, we have a class R-symbol ‘Year values’ under the ‘Year’ R-dimen-
sion plus individual R-symbols for year ‘1754’ and four others. It would have been 
incorrect to make the ‘1754’ R-symbol a child of the ‘Year values’ class R-symbol as 
it is not a sub-R-symbol of every R-symbol in the class ‘Year values’. 

Finally, when the individual R-symbols within the class are not specifically interest-
ing, but the grouping of them is, we reduce them to a single R-symbol capturing the 
concept of the collection of R-symbols, Fig. 5d. The R-symbol for the concept of the 
collection is at the top, the class R-symbol for all the members of the collection is at 
the bottom of the structure, and in between we include an R-Dimension to identify the 
aspect common to the members that define the category. 

This idiom is inverse to for-each: while for-each allows us to consider every member 
of a collection identically but individually, reduce allows us to consider the entire col-
lection as a single unit. A common use for the reduce idiom is in plots of data, where 
there are emergent structures that exist only as collections of ‘simpler’ R-symbols. For 
example, in Fig. 9 below (grey shading), the ‘Value of exports in a year’ class R-symbol 
is reduced to the ‘Line of exports’ R-symbol via the ‘Value of Exports’ R-dimension. 

Together, these collection idioms provide succinct, expressive modelling options for 
collections of R-symbols. 

 
Fig. 6. (a) General model of sum R-dimensions. (b) Example using weekdays. 

3.2 R-Dimension idioms 

As mentioned earlier, we may think of an R-Dimension as a ‘type’ of R-symbols – all 
the R-symbols that are under the same R-Dimension in the hierarchy fill the same se-
mantic role in the representation. Taking inspiration from this ‘type’ analogy, we pre-
sent two idioms named after algebraic data types [6]: sum R-Dimensions, and product 
R-Dimensions.  

A sum R-Dimension is an R-Dimension that has two or more sub-R-Dimensions. 
Just as a sum type is the union of its constituents, a sum R-Dimension is the union of 
the sub-R-Dimensions. We encode a sum R-Dimension in RISN in the obvious way: 
the sum R-Dimension is directly above its sub-R-Dimensions in the hierarchy. Fig. 6a 
presents the general idiom, while Fig. 6b is a diary example from a “week to a view” 
diary that differentiates weekday and weekend blocks. An example of sum R-dimen-
sions in the Playfair line graph model, orange shading in Fig. 3, states that all datapoints 
are comprised of export plus import datapoints (see Fig. 10 for another example). 

A product R-Dimension is an R-Dimension that combines two or more R-Dimen-
sions. Just as a product type is the cartesian product of constituent types, the R-symbols 
of a product R-Dimension can be considered as some combination of the R-symbols of 
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the constituent R-Dimensions. The direct analog in algebraic data types would be a 
tuple type. Product R-Dimensions are encoded in RISN as being directly under their 
constituent R-Dimensions in the hierarchy. The general idiom is shown in Fig. 7a, and 
an alternative shortcut of the idiom is in Fig. 7b for convenience. Fig. 7c is an example 
about citations that code the idea that combining author’s surname, an ordinal quantity, 
with a year of publication, an interval quantity, produces a citation, which is an ordinal 
quantity. An example in the Playfair line graph model, green shading in Fig. 3, captures 
the idea that a datapoint for equal amounts of trade occurs when the data points for 
export and import data are identical. 

For both sum and product R-Dimensions, the quantity scales of their resulting R-
dimensions require careful consideration; the interaction in particular for a product R-
dimension is complex, with no simple domain-independent rules governing the quantity 
scale of the resulting R-dimension. 

Although R-Dimension idioms were presented in isolation, they can compose in 
powerful ways. With these R-Dimension structures for sums and products, we have a 
concise, powerful way to model rich interpretations by composing R-symbols or de-
composing R-schemes.  

 
Fig. 7. (a) General model of product R-dimension. (b) Alternative shortcut for (a). (c) Example 

model of citations as product of author and year. 

3.3 Coordinate systems 

Representations are often structured around coordinate systems: literally, systems that 
coordinate information. In addition to the obvious cases – such as tables, and the Car-
tesian axes of graphs – coordinate systems occur when one or more R-Dimensions pro-
vide an indexing system for one, or more, R-Dimensions for sets of data. Coordinate 
systems setup linked conceptual and graphical spaces within which individuals are lo-
cated. In practice, we find two idioms for modelling coordinate systems; explicit and 
implicit. In the case of explicit coordinate systems, the modeller specifically identifies 
a fixed set of R-dimensions that constitute the coordinate system that are distinct from 
the R-dimension(s) that categorises the dataset(s). A template for this case is shown in 
Fig. 8a. Information visualisations with graphical objects that define quantities, such as 
axes with scales or legends setting up categories, are typically interpreted as explicit 
coordinate systems. Alphanumerical index systems, such as book classification 
schemes, are explicit coordinate systems. Books in an unorder collection are indexed 
by R-dimensions for subject areas, sub-topics, author, year and the like. 

In contrast, in an implicit coordinate system the distinction between what is an in-
dexing R-dimension and a data R-dimension is not taken by the interpreter to be fixed 
but interchangeable. What counts as data depends on the user’s current context. Fig. 8b 
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shows the template for this idiom; the nested R-Scheme has gone, so the R-Dimensions 
all occur at the same level. The particular interpretation for Playfair’s line graph in Fig. 
3 includes an implicit coordinate system (yellow rectangle), because the modeller did 
not wish to single out points in the graph as the only dataset. Rather, the ‘Data point’ 
R-dimension is used as an index along with the ‘Money’ R-dimension to make a coor-
dinate system dealing with ‘Trade directions’ and ‘Trade differences’ (centre left). 

 
Fig. 8. (a) Template for a nested (explicit) coordinate system for a 2D representation. (b) Tem-

plate of flat (implicit) coordinate system for a 2D representation. 

Summary. Idioms, common sub-network structures of RIST schemas, have been dis-
covered and each possess distinctive interpretive functions. This provides some reas-
surance about the potential validity, or at least utility, of schemas and relations proposed 
by RIST. Idioms introduce a new layer of interpretations between the elementary sche-
mas and whole networks, which imposes theoretically desirable constrains on the space 
of possible network structures for modelling. In turn, this suggests that attempts to 
model the interpretations of representations could profitably focus on interpretive func-
tions of idioms, an idea that is to be outlined in the last section. 

4 Diversity of interpretations 

So far, we have presented refinements to RIST’s schema relations and introduced idi-
oms to encode particular interpretive functions, both of which improve the adequacy of 
the theory. This section considers our first, albeit small-scale, empirical test of RIST 
and the capabilities of RISN. In particular, we wish to show that the theory and model-
ling notation are able to capture the alternative interpretations of a representation made 
by different readers, as mentioned in the Introduction. In the test, three of the authors 
(“reviewers”), who are experienced users of representational systems, independently 
created RISN models for 3 different representations. The representations were Play-
fair’s line graph (Fig. 1), the Home tab from Microsoft PowerPoint’s toolbar, and a 
chart about monetary flows in an economy depicted as a hydraulic model5. They were 
selected due to their diversity in both their form and function. Here, just the model for 

 
5 ‘The Round Flow of Money Income and Expenditure, 1922’: https://commons.wiki-

media.org/wiki/File:The_Round_Flow_of_Money_Income_and_Expenditure,_1922.jpg 
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Playfair’s line graph will be examined in detail, see Fig. 3, Fig. 9 and Fig. 10, but we 
summarize the outcomes of the other two representations. 

 
Fig. 9. Interpretation of Playfair’s line graph by R2. 

All reviewers had experience creating RISN models. They reviewed the guidelines 
for RIST/RISN before starting the task. They were instructed to model their own inter-
pretation of the content of the representations. R1, R2 & R3, started by annotating the 
original line graph, Fig.1: R1’s annotations are shown in Fig. 2, where T, D, and S labels 
stand for R-symbols, R-Dimensions, and R-schemes, respectively. The reviewers’ 
RISN models for the line graph are shown in Figs. 3, 9 & 10. For reference, we high-
lighted parts of the models with coloured shadings. After finishing their individual 
models, the reviewers discussed the models and made edits that just corrected the inva-
lid schema relations, which were few in number. We wished to determine if the models 
revealed meaningful differences in the reviewers’ interpretations, and what the princi-
pal differences were. 

R1’s overall interpretation treats that representation as a complex coordinate system 
with five R-dimensions (Fig. 3, yellow shading). The concept of trade balance, ‘Equal 
trade’ R-symbol, depends on four of the R-dimensions, directly or indirectly, so is cen-
tral to the network of schemas conceptually and happens to be positioned centrally in 
the diagram. Derived quantities, such as ‘Trade volume (over a period of time)’ and 
‘Rate (of change of trade)’, are defined within the overarching coordinate system as a 
sub-R-dimension anchored on an R-symbol of some other R-dimension. 

R2’s interpretation has global coordinate system which incorporates the two graph 
axes as sub-system alongside an R-dimension for the lines in the graph (Fig. 9). Other 
R-dimensions, which were primary for R1, are derived concepts in R2’s interpretation, 
defined relative to the context of particular values of the overarching coordinate system. 

R3’s model (Fig. 10) contrasts to R1 and R2 in terms of its overall interpretation. It 
gives the concepts of trade ‘Balance’ and ‘Region’ primacy and uses them to examine 
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the relation of imports and exports relative to England. The coordinate system for the 
graph axes is seen as subservient to those ideas and is providing specific values as re-
quired. 

 
Fig. 10. Interpretation of Playfair’s line graph by R3.  

Comparing the topology of the models, all three models have approximately simi-
lar depth, but R1’s model has greater breadth, which reflects concepts not in R2 and 
R3’s interpretation. Examining the range and priority of concepts, R3’s interpretation 
focuses on the topic’s conceptual content – what is represented – whereas R1 and R2 
are oriented more towards the means by which the line graph conveys the information 
– how the content is represented – using a global, high-level, coordinate system.  

The idioms introduced in Section 3 provide a useful level of abstraction for our anal-
ysis of the models; like molecules being understood through their functional groups, 
we can understand our RISN models through their idioms. The coloured areas in Figs. 
3, 9 and 10 exemplify some of them. The coordinate system idiom (in yellow) appears 
across all models, as described in the summaries above, but at different levels. The sum 
R-dimension is present in two of models: examples are shown Fig. 3 and Fig. 10 (or-
ange shading). R1 splits the ‘Data points’ global R-dimension into exclusive sub-R-
dimensions for ‘Export’ and ‘Import’ data. R3 divides trade ‘Balance’ into the three 
categories of ‘Negative’, ‘Positive’ and ‘Neutral’. R1 and R2 also make equivalent dis-
tinctions related to trade balance, but a lower level.   

There are also differences among how reviewers use idioms. All three use coordinate 
systems (Figs. 3, 9 & 10, yellow shading) and the ‘for-each’ idiom (blue shading), but 
their primacy in the interpretations varies.  For R1 and R2, the coordinate takes prece-
dence, with the ‘for-each’ idiom serving a narrower role.  In contrast, R3 gives the ‘for-

R3
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each’ idiom priority and hangs a coordinate system under that idiom.  Another case is 
that of important “trade balance” concept, which is encoded in different ways by all 
three reviewers: R1 uses a product R-dimension idiom (Fig. 3, light green); R2 has a 
single R-symbol for a concept anchored on other R-symbols (Fig. 9, ‘Crossing of Im-
ports/Export values’); and for R3 it is an R-symbol of a sub-R-dimension of the primary 
‘Balance’ R-dimension.   

Similar observations apply to the PowerPoint toolbar and the economic flowchart 
modelling. For example, for the PowerPoint toolbar, R2’s model includes the use of R-
schemes for concepts extensively, whereas R1 and R3 tend to categorize and group 
concepts with R-dimensions. In spite of this, there is little variation in terms of the depth 
of the models across reviewers. The models for the economic flow are also diverse 
across reviewers. R3’s model focusses on the topic, R2’s model focusses more on the 
structure of the diagram, and R1’s model is a mixture. 

The modelling activities were followed by a session of reflection by the reviewers.  
From instances of ambiguity among the reviewer interpretations, it was apparent that 
there are some specific limitations to RISN expressiveness that need to be addressed.   
In particular, the semantics of the relation links between R-dimension and class R-sym-
bol schemas needs clarifying, and when R-dimensions and class R-symbols have “com-
mon elements” or are disjoint.  

5 Discussion  

We presented Representational Interpretive Structure Theory, RIST. It proposes that 
interpretation of representations is cognitively grounded in four schemas whose pri-
mary function is to associate (a) concepts from the to-be represented target domain with 
(b) graphical objects in the representation that stand for those concepts. RIST specifies 
a small number of relations that link these schemas. RIST contends that an interpreta-
tion of a representation consists of a network of schemas that are linked by the relations. 
Different interpretations have alternative network structures. By examining numerous 
networks that model diverse representations, idioms were discovered that are common 
to representations with distinct formats. Idioms appear to perform specific interpretive 
functions and operate at an intermediate level between the elementary schemas and 
complete networks for whole representations. 

RISN is a modelling notation for RIST, which possess distinct modelling symbols 
for each class of schemas. The symbols are connected together with lines that stand for 
relations between the schemas. RIST schema networks are modelled as networks of 
RISN symbols. 

A small-scale experiment was conducted in which three reviewers produced models 
of their own interpretations of three heterogenous representations. The RISN networks 
produced across the different representations were varied and the networks produced 
by different reviewers, of the same representation, were also distinctive. The models 
varied both in the content and in their topology. Further, close examination of the mod-
els reveals that the overall interpretations are readily explicable in terms of the idioms. 
In other words, a reviewer could use the idioms to guide their understanding of the 
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meaning of a RISN model produced by another reviewer. Some idioms were shared 
across all the reviewer’s models for a given representation and in other cases different 
idioms were deployed in the interpretations of alternative reviews on the same repre-
sentation. Thus, this small study provides some tentative preliminary evidence of the 
acceptability of RIST and the utility of RISN. However, further studies are needed in 
order to make more definite claims. Such studies are planned. 

The Introduction proposed three desiderata for a cognitive theory of the interpreta-
tion of representations. The first concerns the facility to model alterative interpretations 
made by different individuals. The present study begins to demonstrate that RIST/RISN 
has this capability. Further, although anecdotal, the authors recognise that R1 has par-
ticular expertise with Cartesian plots, so it is no surprise that R1’s model of the line 
graph had a greater breadth than the models of R2 and R3, as it included a greater range 
of concepts. Also, R3 was the least familiar with PowerPoint, so it is also not unex-
pected that the network models of R1 and R2 were broader. All this suggests that 
RIST/RISN could be used in an approach to model differences in the interpretative 
structure of learners with different level of experience of target representations.   

The outcome of the small study also suggests that it may be feasible to model the 
different interpretive structures of alternative representations of the same subject mat-
ter. RIST/RISN might provide a useful method for the evaluation of alternative repre-
sentations for particular topics. This would satisfy the second and third requirements 
described in the Introduction.  

Finally, we note that this research was conducted as part of a wider project that is 
developing automated systems for the selection of representations for individual prob-
lem solvers with varying levels of competence on different classes of problems [13], 
[14], [15]. One aspect of the project is to devise a measure of the cognitive cost of 
representations [5], which can be used to assess the relative difficulty a user will likely 
experience with alternative representations. We note that RIST/RISN may provide an 
addition route to such assessments though the analysis of the contents of the schemas 
and the nature of their networks.   
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