INSPECTION AND SELECTION OF REPRESENTATIONS

Aaron Stockdill Daniel Raggi Mateja Jamnik

University of Cambridge, UK

Grecia Garcia Garcia Holly Sutherland Peter Cheng University of Sussex, UK

26 June 2019

OVERVIEW

Motivation

How to describe representations?

How to select representations?

Conclusions and work in progress

Motivation

People change representation to get to information

People change representation to get to information They generally do this naturally, but for some it can be challenging

People change representation to get to information

They generally do this naturally, but for some it can be challenging

We aim to build a tool that can help choose a suitable representation for a given problem for a particular person

Bayesian approach: represent problem in formal conditional probability.

Bayesian approach: represent problem in formal conditional probability.

Assume:

Bayesian approach: represent problem in formal conditional probability.

Assume: $Pr(b) = \frac{1}{4}$

Bayesian approach: represent problem in formal conditional probability.

Assume:
$$Pr(b) = \frac{1}{4}, Pr(f | b) = \frac{2}{3}$$

Bayesian approach: represent problem in formal conditional probability.

Assume:
$$\Pr(b) = \frac{1}{4}, \ \Pr(f \mid b) = \frac{2}{3}, \ \Pr(b \mid f) = \frac{1}{2}.$$

Bayesian approach: represent problem in formal conditional probability.

Assume: $\Pr(b) = \frac{1}{4}$, $\Pr(f \mid b) = \frac{2}{3}$, $\Pr(b \mid f) = \frac{1}{2}$. Calculate: $\Pr(\bar{b} \cap \bar{f})$

SOLUTION UNDER BAYESIAN APPROACH

Notice the following facts:

$$\Pr(\bar{b}) = \Pr(\bar{b} \cap \bar{f}) + \Pr(\bar{b} \cap f) \tag{1}$$

$$\Pr(f) = \Pr(b \cap f) + \Pr(\bar{b} \cap f) \tag{2}$$

$$\Pr(\bar{b} \cap f) = \Pr(\bar{b} \mid f) \Pr(f) = \frac{1}{2} \Pr(f).$$
(3)

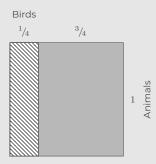
From (2) and (3) we can show that $Pr(\bar{b} \cap f) = \frac{1}{2} Pr(b \cap f) + \frac{1}{2} Pr(\bar{b} \cap f)$, from which we obtain

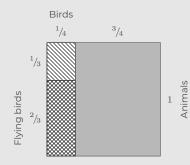
$$\Pr(\bar{b} \cap f) = \Pr(b \cap f). \tag{4}$$

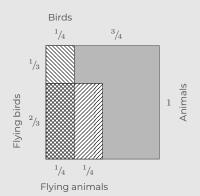
Thus, we have the following:

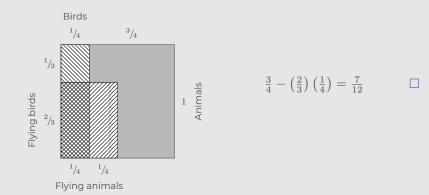
$$Pr(\bar{b} \cap \bar{f}) = Pr(\bar{b}) - Pr(\bar{b} \cap f) \qquad \text{from (1)}$$

$$= Pr(\bar{b}) - Pr(b \cap f) \qquad \text{from (4)}$$


$$= (1 - Pr(b)) - Pr(f \mid b) Pr(b) \qquad \text{from probability axioms}$$

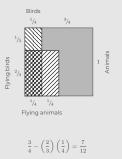

$$= \frac{3}{4} - \left(\frac{2}{3}\right) \left(\frac{1}{4}\right) = \frac{7}{12}. \qquad \text{from assumptions} \qquad \Box$$


One quarter of all animals are birds. Two thirds of all birds can fly. Half of all flying animals are birds. Birds have feathers. If X is an animal, what is the probability that it's not a bird and it cannot fly?


Animals

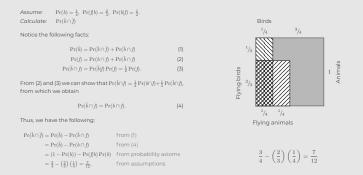
Assume: $Pr(b) = \frac{1}{4}$, $Pr(f|b) = \frac{2}{3}$, $Pr(b|f) = \frac{1}{2}$. Calculate: $Pr(\overline{b} \cap \overline{f})$

Notice the following facts:

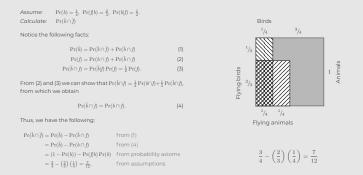

$Pr(\overline{b}) = Pr(\overline{b} \cap \overline{f}) + Pr(\overline{b} \cap f)$	(1)
$Pr(f) = Pr(b \cap f) + Pr(\overline{b} \cap f)$	(2)
$\operatorname{Pr}(\overline{b} \cap f) = \operatorname{Pr}(\overline{b} f) \operatorname{Pr}(f) = \frac{1}{2} \operatorname{Pr}(f).$	(3)

From (2) and (3) we can show that $\Pr(\bar{b}\cap f)=\frac{1}{2}\Pr(b\cap f)+\frac{1}{2}\Pr(\bar{b}\cap f),$ from which we obtain

$$Pr(\overline{b} \cap f) = Pr(b \cap f).$$
 (4)


Thus, we have the following:

$Pr(\overline{b} \cap \overline{f}) = Pr(\overline{b}) - Pr(\overline{b} \cap f)$	from (1)
$= Pr(\overline{b}) - Pr(b \cap f)$	from (4)
$= (1 - \Pr(b)) - \Pr(f b) \Pr(b)$	from probability axioms
$= \frac{3}{4} - (\frac{2}{3})(\frac{1}{4}) = \frac{7}{12}.$	from assumptions



Assume: $Pr(b) = \frac{1}{4}$, $Pr(f b) = \frac{2}{3}$, $Pr(b f) = \frac{1}{2}$.		
Calculate: $Pr(\bar{b} \cap \bar{f})$		Birds
Notice the following facts:		¹ / ₄ ³ / ₄
$Pr(\overline{b}) = Pr(\overline{b} \cap \overline{f}) + Pr(\overline{b} \cap f)$	(1)	1/3
$Pr(f) = Pr(b \cap f) + Pr(\overline{b} \cap f)$	(2)	
$\Pr(\overline{b} \cap f) = \Pr(\overline{b} f) \Pr(f) = \frac{1}{2} \Pr(f).$	(3)	birds
From (2) and (3) we can show that $\Pr(\bar{b}\cap f)=\frac{1}{2}\Pr(b\cap f)+$ from which we obtain	$\frac{1}{2} \Pr(\overline{b} \cap f),$	Flying birds
$Pr(\overline{b} \cap f) = Pr(b \cap f).$	(4)	
Thus, we have the following:		1/4 1/4 Flying animals
$Pr(\overline{b} \cap \overline{f}) = Pr(\overline{b}) - Pr(\overline{b} \cap f)$ from (1)		
$= Pr(\overline{b}) - Pr(b \cap f)$ from (4)		
= (1 - Pr(b)) - Pr(f b) Pr(b) from probability	/ axioms	$\frac{3}{4} - \left(\frac{2}{3}\right)\left(\frac{1}{4}\right) = \frac{7}{12}$
$= \frac{3}{4} - (\frac{2}{3})(\frac{1}{4}) = \frac{7}{12}.$ from assumption	ns	4 (3/(4/ 12

They make different things evident.

They make different things evident. They require different kinds of knowledge.

They make different things evident. They require different kinds of knowledge. They allow different manipulations.

How to describe representations?

HOW DO WE TALK ABOUT REPRESENTATIONS?

Should we assume we have formal system specifications?

HOW DO WE TALK ABOUT REPRESENTATIONS?

Should we assume we have formal system specifications?

No, we need a method to describe representational systems from examples (e.g., textbooks)

HOW DO WE TALK ABOUT REPRESENTATIONS?

Should we assume we have formal system specifications?

No, we need a method to describe representational systems from examples (e.g., textbooks)

By the *symbols* they use, the *inferences* that can be done, and the *knowledge* they encode.

Grammatical & Inferential

Grammatical & Inferential

- ► tokens: atomic symbols
- **types**: classes of tokens and expressions
- **patterns**: typical or salient classes of expressions

Grammatical & Inferential

- ► tokens: atomic symbols
- types: classes of tokens and expressions
- **patterns**: typical or salient classes of expressions
- ► facts/laws: knowledge
- ▶ tactics: valid manipulations of the system

Grammatical & Inferential

- ► tokens: atomic symbols
- types: classes of tokens and expressions
- **patterns**: typical or salient classes of expressions
- ► facts/laws: knowledge
- ▶ tactics: valid manipulations of the system

For each RS, encode this into a table. This is our knowledge of the RS.

Bayesian

kind	value
types	real, event
tokens	$\begin{split} &\Omega, \emptyset, 0, 1, =, +, -, *, \div, \cup, \\ &\cap, \backslash, , \mathrm{Pr}, \end{split}$
patterns	_:real = _:real, Pr(_ _) = _,
facts	Bayes' theorem, law of total probability, non-negative probability,
tactics	rewrite, arithmetic calculation

Geometric

kind	value
types	point, segment, region,
	real, string
tokens	\$point, \$segment,
	\$shade
patterns	\$rectangle, \$contained,
facts	scale-independence of
	ratio, non-negative
	area, area additivity,
tactics	draw point, draw
	segment, delete, join,
	compare sizes

Presented in some RS (natural language in this case). Its table must look a bit like a sub-table of RS, BUT...

One quarter of all animals are birds. Two thirds of all birds can fly. Half of all flying animals are birds. **Birds have feathers.** If X is an animal, what is the probability that it's not a bird and it cannot fly?

Presented in some RS (natural language in this case). Its table must look a bit like a sub-table of RS, BUT...

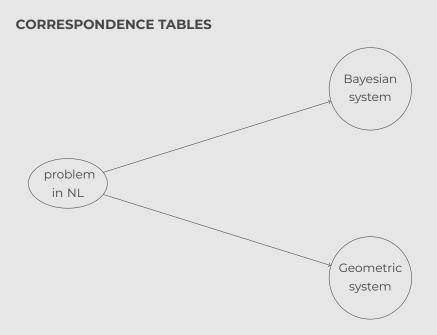
Not everything is equally important!

PROBLEMS AND THEIR IMPORTANCE HIERARCHY

	kind	value
importance →	error allowed	0
	answer type	ratio
	tokens	probability, and, not
	types	ratio, class
	patterns	_: ratio of _: class are _: class,
	facts	Bayes' theorem, law of total probability,
	tactics	deduction, calculation
	tokens	one, quarter, all, animal, birds, two, thirds, can, fly, half, flying,
		X, cannot
	related tokens	times, divided_by, plus, minus, equals, or, union, intersection,
	# of tokens	67
	# of distinct	31
	tokens	
noise	tokens	feathers
no	related tokens	beast, animate, creature,

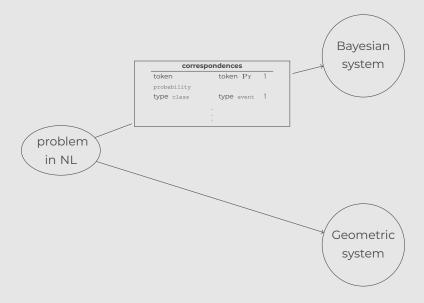
How to select representations?

A *correspondence* is a reason why one RS is suitable for a problem.

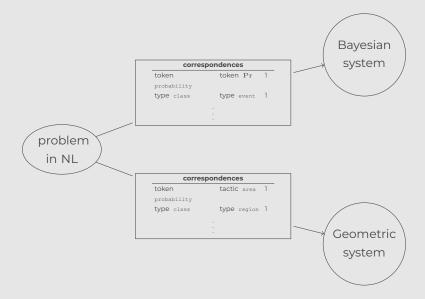

A *correspondence* is a reason why one RS is suitable for a problem.

Mostly analogical representational matches between tokens, types, patterns, tactics, facts etc.

Problem in NL	Bayesian RS	Geometric RS
is about <i>classes</i>	represents events	represents regions
is about	represents Pr	represents area
probability		(size)
is about <i>ratios</i>	represents <i>real</i>	represents <i>real</i>
	numbers	numbers
law of total	law of total	additivity of areas
probability is	probability is a fact	is a fact
useful		
no error allowed	is rigorous	is rigorous


Problem in NL	Bayesian RS	Geometric RS
is about <i>classes</i>	represents events	represents regions
is about	represents Pr	represents area
probability		(size)
is about <i>ratios</i>	represents <i>real</i>	represents <i>real</i>
	numbers	numbers
law of total	law of total	additivity of areas
probability is	probability is a fact	is a fact
useful		
no error allowed	is rigorous	is riaorous

In practice, we build correspondence tables to relate pairs of properties with a *score* (how good a reason is it?)



18/24

CORRESPONDENCE TABLES

CORRESPONDENCE TABLES

To assess the value of some candidate system ${\cal S}$ given a problem $q\!\!\!\!\!$

To assess the value of some candidate system S given a problem q.

Add up correspondence scores (i.e., count reasons why S is good)?

To assess the value of some candidate system S given a problem q.

- Add up correspondence scores (i.e., count reasons why S is good)?
- But reasons are not equally important,

To assess the value of some candidate system S given a problem q.

- Add up correspondence scores (i.e., count reasons why S is good)?
- But reasons are not equally important,
- and reasons may not be independent from each other!

To assess the value of some candidate system S given a problem q.

- Add up correspondence scores (i.e., count reasons why S is good)?
- But reasons are not equally important,
- ▶ and reasons may not be independent from each other!

Thus we weight the score by the importance relative to the problem,

To assess the value of some candidate system S given a problem q.

- Add up correspondence scores (i.e., count reasons why S is good)?
- But reasons are not equally important,
- ▶ and reasons may not be independent from each other!

Thus we weight the score by the importance relative to the problem, and we encode correspondences with a simple logic.

MAKING A RECOMMENDATION

Bayesian	9.3
Geometric	7.2
Natural Language	6.9
Contingency	5.4
Euler	1.5

Conclusions and work in progress

A framework for representing representations

A proof-of-concept algorithm for suitability

A framework for representing representations

A proof-of-concept algorithm for suitability

Main limitation is reliance on a human analyst for:

- describing RSs and problems (including importance)
- finding correspondences (including logical dependencies and scores)

A framework for representing representations

A proof-of-concept algorithm for suitability

Main limitation is reliance on a human analyst for:

- describing RSs and problems (including importance)
- finding correspondences (including logical dependencies and scores)

Can we automate this?

A framework for representing representations

A proof-of-concept algorithm for suitability

Main limitation is reliance on a human analyst for:

- describing RSs and problems (including importance)
- finding correspondences (including logical dependencies and scores)

Can we automate this?

How can we evaluate this?

WHAT ARE WE WORKING ON NOW?

How to formalise the concept of correspondence.

- The probability of observing certain property in a solution in some candidate RS, given some observed properties in a problem.
- ▶ If so, how to infer correspondence scores, and how to use them?

WHAT ARE WE WORKING ON NOW?

How to formalise the concept of correspondence.

- The probability of observing certain property in a solution in some candidate RS, given some observed properties in a problem.
- ▶ If so, how to infer correspondence scores, and how to use them?

Cognitive properties of representations.

- Figuring out what how to calculate cognitive costs
- How to work the user into the calculations?

INSPECTION AND SELECTION OF REPRESENTATIONS

Aaron Stockdill Daniel Raggi Mateja Jamnik

University of Cambridge, UK

Grecia Garcia Garcia Holly Sutherland Peter Cheng University of Sussex, UK

26 June 2019