
Simulating Neuromorphic Reservoir Computing:
Abstract Feed-forward Hardware Models

Aaron Stockdill* and Kourosh Neshatian†
Department of Computer Science

and Software Engineering
University of Canterbury

Christchurch, New Zealand
Email: *aas75@uclive.ac.nz and †kourosh.neshatian@canterbury.ac.nz

Abstract—Recent developments of unconventional hardware
using memristors and atomic switch networks has led to renewed
interest in hardware neuromorphic solutions. Most hardware
models rely upon a reservoir neural network as the basis
of any learning, but the distinct differences between software
implementations and hardware reality mean what we take for
granted in traditional software reservoirs—such as cycles, loops,
infinite energy, and discrete time—may be severely limited or
unavailable in hardware, raising questions about how a hardware
implementation would perform and how to potentially overcome
these limitations. Proposed hardware additions, such as an echoer
or an input delay mechanism, address some of these limitations.

I. INTRODUCTION

A human brain is able to perform better than modern
computers at deceptively “simple” tasks such as object recog-
nition, while also using in the order of a millionth of the
power: hence the allure of machines that can match it. Recent
advances in neuromorphic computing have meant renewed
interest in the hopes of building such a machine [11]. A
significant cause of this sudden explosion of popularity is the
discovery of the memristor [17], a fourth fundamental circuit
component that links flux and charge, and behaves as a variable
resistor that depends on the history of inputs first theorised by
Chua in 1971 [5]. Thus the promise of low-power, intelligent
computing has reappeared.

Because the memristor has a state associated with it, they
lend themselves to learning temporal sequences. Current re-
search has looked into existing machine learning techniques
which were themselves designed to operate with time-series
datasets, and adapt them for use with memristive hardware.
Using hardware, and thus an inherently fixed system, as the
basis of computing means a recurrent neural network called the
reservoir neural network is commonly considered appropriate.
In this paper we present a flexible simulation of neuromorphic
hardware as a reservoir in reservoir neural networks.

A prominent model of reservoir neural network is the echo
state network (ESN) described by Jaeger in 2001 [7]. Jaeger
defines the ESN by a reservoir of neurons connected by
synapses with weights that remain unaltered, in contrast to
trained artificial neural networks, and instead restricts all the
learning to a readout layer. Because an ESN is considered to

be the more “approachable” definition of a reservoir neural
network, that is the model we use in this paper. Section II
provides a thorough description of ESNs, while Section III
has a discussion on using memristors in reservoirs.

Another model of reservoir neural networks is the liquid
state machine (LSM) devised by Maass in 2002 [10]. Maass
uses the analogy of a liquid with ripples, rather than an
echo property. Ripples are analogous to memory, because
although the input has finished, the ripples continue, uniquely
encoding the past inputs. There are two important features
that an LSM must have: the separation property, and the
approximation property. The separation property ensures that
a unique history of input maps to a unique liquid state, while
the approximation property ensures that the readout layer is
capable of approximating the desired continuous function.

Reservoir neural networks place no restrictions on how the
neurons connect. This gives the network an implicit memory,
where past inputs entirely define the current state. This is the
echo property in ESNs. The structure of the reservoir is known
to have significant effects on the learning capabilities of the
system [16], and in this paper we will frame these structural
effects in terms of hardware limitations, with a particular focus
on atomic switch networks.

II. ECHO STATE NETWORKS

An echo state network (ESN) is a recurrent neural network
first described by Jaeger in 2001 [7] that uses a reservoir of
neurons that do not need training. Instead, the training happens
in a readout layer. A more complete summary of ESNs is
available from Lukoševičius [9], but Equation set (1) defines
them.

y(t) = Wout[1;u(t);x(t)]

x(t) = (1− α)× x(t− 1) + α× x̃(t)

x̃(t) = tanh
(
Win[1;u(t)] +Wx(t− 1)

) (1)

The readout layer Wout is the least-squares linear map from
the input vectors u(t) to the output vectors y(t), based on the
internal state of the network x(t). The operator [·; ·] denotes
vertical vector concatenation. The constant α is the leaking
rate, referring to the mixing between current and previous
output.978-1-5386-4276-4/17/$31.00 c⃝2017 IEEE

The ESN’s readout layer is typically trained using a linear
model, leading to a simpler recurrent neural network than
otherwise possible with techniques such as back-propagation
through time, or extended Kalman filters, while retaining
expressiveness. The linear model is for the ESN author to
choose, but a common and recommended choice is ridge
regression [9]. This is the technique we will use in this paper,
using regularisation hyperparameter λ:

Wout = YtargetXT (XXT + λI
)−1

(2)

The matrix Y is the sequence of input vectors arranged hori-
zontally, while the matrix X is the sequence of [1;u(t);x(t)]
vectors arranged horizontally.

The stateful nature of ESNs, and their simplified training,
means they have frequent applications in computer vision,
time-series prediction, and signal processing. As their use
grows, it is important to understand the inherent limitations
of the paradigm, and understand the cause of any apparent
weakening.

The reservoir used by an ESN is the source of, and restric-
tion on, its memory capacity. Normally the only restriction
placed on an ESN is the spectral radius, a measure of scaling
performed by the reservoir. If the input could potentially
contain a zero vector, then the spectral radius must be less
than one [9]. Sometimes, the sparsity of the reservoir is also
restricted, but this is for performance reasons. Beyond this, we
usually have no reason to change the setup: random generation
works well, being likely to construct a recurrent, connected
graph of neurons.

But by placing further restrictions on the reservoir, we
can reduce the “power” of the ESN. Čerňanský and Makula
demonstrated this in their work exploring the feed-forward
ESN [4]. By removing both cycles and loops in the reservoir,
they show an ESN becomes equivalent to a feed-forward
neural network with inputs representing up to n steps back
in the input history, where n is the number of neurons in the
reservoir.

The name “feed-forward ESN” does not imply a similar
training or propagation process to a traditional neural network.
Instead, this refers to the inherent direction of information in
the reservoir, from input to output. That is, the graph defined
by neuron connections is directed and acyclic, thus having a
topological sort. We adopt the name feed-forward in this paper
for a similar purpose.

III. MEMRISTORS AND ATOMIC SWITCHES

Memristor networks and atomic switch networks are a
promising area of research for neuromorphic hardware. But
because they are circuit components, they must obey Kirch-
hoff’s Laws, so there are restrictions on how they behave.

A memristor is a fundamental circuit element linking flux
Φ and charge Q, and so completing the relationships between
current, voltage, flux, and charge. First theorised by Chua in
1971 [5], not until 2008 was the memristor found to exist by
Strukov et al. [17], occurring naturally at nanometre scales.

A flux-controlled memristor is defined by two equations,

I = V ·G(x, V)
dx

dt
= f(x, V). (3)

The family of devices that these equations permit are sensitive
to the present and past inputs. This effectively grants the device
a memory, hence the name is derived from “memory resistor.”
This equation also gives rise to the distinctive pinched hystere-
sis when plotting voltage against current, visible in Figure 1a.

As well as the abstract definition, we require a concrete
realisation of a memristor to perform simulations. For this, we
use the standard memristor as defined by Konkoli et al. [8],

dx

dt
= βV +

1

2
(α− β)(|V + VT | − |V − VT |) G(x, V) =

1

x
.

This memristor will switch between low and high conductance
over the threshold voltage VT . The constants α (distinct from
that in (1)) and β are physical properties unique to a device.

Atomic switches are another recent avenue for neuromor-
phic research. Because of their manufacturing process, they
are much cheaper and easier to produce in large networks
than standard memristors, and hence they are commonly used
to study neuromorphic hardware. First becoming prominent in
2012, research first focused on silver nanowire approaches [1].
Although not the same as memristors, they share the key
characteristic of naturally encoding their history into their
current state. This is shown in Figure 1b, based on the
percolating network technology from Fostner and Brown [6].

Work on atomic switches continues following successful
initial work by Sillin et al. [14] showing potential neuro-
morphic abilities using a reservoir-style approach to machine
learning. Burger and Teuscher also demonstrated how individ-
ual device variation would not impact the performance of the
reservoir [2]. Competing atomic switch network architectures
have emerged, such as the percolation networks from Sattar
et al. [13].

IV. NEUROMORPHIC CIRCUITS

An individual circuit component is not much good by itself.
Despite the memory capabilities, memristors can only give an
indication of whether the current input is near some average
of the past inputs. However, just as the perceptron is limited
when acting alone but more powerful when joined together, the
memristor may too gain power when arranged into a network.

To explore these networks, we need to be able to efficiently
create these component networks, and calculate the effect of
passing a current and voltage over every component at once.
To lay out the network of memristors and atomic switches, we
build on the techniques developed by Fostner and Brown [6].
To calculate how the network behaves when applying current
and voltage, we use a similar approach to Smith [15], which
we outline shortly.

Both Fostner and Brown [6], and Smith [15], take the
approach of simulating individual clusters, determining how
they organise themselves in to groups, and calculating the
distance between these groups. Because the actual location
of groups is less important than their general distribution,

−1.0 −0.5 0.0 0.5 1.0

Voltage V

−0.10

−0.05

0.00

0.05

0.10

C
ur

re
nt

I

(a) Memristor

−1.0 −0.5 0.0 0.5 1.0

Voltage V

−10

−5

0

5

10

C
ur

re
nt

I

(b) Switch

Fig. 1: A pinched hysteresis generated by standard memristors, and atomic switches.

we take a statistical approach to particle deposition. We then
randomly deposit the particle group centroids, and use a
Delaunay triangulation to connect the centroids in a planar
manner, and take the connection distances from a connection
width distribution. Figure 2b shows the generated structure,
where the edges are the memristive component: memristors
or switches.

Once the network is set, we must be able to simulate
electricity applied across it. Current and voltage are calculated
through Kirchhoff’s Circuit Laws. Kirchhoff’s Voltage Law
states that the directed potential differences around a circuit
must sum to zero. We use this law to ensure that the potential
difference between the input groups and the output groups is
equal to the voltage applied to the input groups (that is, the
network consumes all the voltage).

Kirchhoff’s Current Law states that the sum of directed
current at junction i is 0. Using the notation that N (·) is a
function that returns the neighbours of a given group, and that
Iij is the directed current flowing between groups i and j, we
can write ∑

j∈N (i)

Iij = 0. (4)

Because determining Iij directly is difficult, we can use Ohm’s
Law and the potential difference between two groups, and set
the input and output currents to be 1A, appropriately signed.
Thus we can rewrite Equation (4) as

I in
i + Iout

i +
∑

j∈N (i)

Gij(Vj − Vi) = 0, (5)

which forms the basis of what Smith called the G matrix [15].
Figure 2a shows the structure of this G matrix.

V. MEMORY IN HARDWARE

An ESN has four sources of memory: leaking, cycles, loops,
and the discrete time steps [16]. Previous work by Stockdill
and Neshatian has shown that these properties provide differ-
ent types of memory, and that not all are necessary. In this
section we link these results to neuromorphic hardware, and
how the limitations can be overcome. As in [16], we will

not consider leaking any further as it is strictly outside the
reservoir. Two distinctions remain between the fully-weakened
ESN and a memristor network. First, the memristor network is
updating the connection weights while the network is running.
Second, the software reservoir is able to amplify and suppress
energy arbitrarily, whereas hardware must obey Kirchhoff’s
Laws.

A. Loops

As shown by Čerňanský and Makula, removing both cycles
and loops reduces an ESN to a feed-forward network with
delayed-time inputs [4]. The memory of the network is limited
by the longest chain. In neuromorphic hardware this is less of a
concern, as the systems are often composed of a large number
of units—in this case, groups.

A loop is an unlikely physical phenomenon to occur natu-
rally. Somehow, a single group in the network would have to
feed back into itself. This is unrealistic, however hardware
capable of repeating back voltage signals is possible. This
hardware “echoing” would mimic the effect of a loop, letting
the network potentially retain some of the reservoir power
required.

B. Cycles

Kirchhoff’s Current Law limits the amount of energy in a
circuit, and forces conservation. That is, a junction is unable
to amplify a signal. In a hardware circuit this means that
the larger the reservoir, the smaller the share of the potential
difference between each pair of groups. However, it also
reveals there cannot be cycles in the network, because this
would imply a cycle of groups where the potential difference
drops forever, Equation (6), leading to an impossible infinitely-
descending structure.

V1 > V2 > · · · > Vk > V1 > · · · =⇒ V1 > V1 (6)

Cycles are not something that can be added back to
a hardware reservoir easily. There is ongoing discussion
about whether switching events that happen on short enough
timescales to occur during electron flow could generate the

− ∑
G1i G12 · · ·

G21 − ∑
G2i · · ·

.

.

.

.

.

.

.
.
.

1

.
.
.

1

−1

.
.
.
−1

1

.
.
.

1

1

.
.
.

1

0 0

0 0

V1

V2

.

.

.

I in
1

I in
2
.
.
.

Iout
1

Iout
2
.
.
.

=

0

.

.

.

.

.

.
0

V in
1

V in
2
.
.
.

0
.
.
.

0

(a)

In OutIn Out

(b)

Fig. 2: (a) The structure of the G matrix used to solve Kirchhoff’s Laws, from Smith [15]. (b) An example generated network,
where nodes are the group centroids, and edges are the memristive component.

−1.0 −0.5 0.0 0.5 1.0

Voltage V

−0.4

−0.2

0.0

0.2

0.4

C
ur

re
nt

I

Fig. 3: The “IV” curve of an Echo State neuron. Note the
lack of (0, 0) intercept.

correct conditions for temporary cycles to form, however this
is at best beyond current technology. For this reason, we are
left building on potential “echoer” hardware to retain some
memory.

C. Conservation of energy

Conserving energy in a reservoir neural network is not
damaging to the system. It is equivalent to restricting the
spectral radius of the reservoir to less than one, as required
by the reservoir to work reliably [16].

An interesting consequence of using voltage as input is
that the power source and the input signal are now linked.
This is entirely different to how software reservoir neural
networks behave, which are capable of producing output with
no input. Figure 3 reveals this effect with an ESN with a
single neuron, modelling the “current-voltage” with input and
output signals. The “pinched hysteresis” so distinctive of the
memristor disappears, and the (0, 0) intercept is replaced by
new intercepts which can be interpreted as no input producing
output. This is because the signal and the power are completely

unrelated. A possible solution is to use a different encoding
to hardware reservoirs, and instead all inputs are mapped to a
higher voltage to get around this. This would ensure that even
for zero input, the network is still receiving power.

D. Discrete time steps

Software ESNs are by nature discrete-time, but this is phys-
ically unrealistic. Because a network of memristors will have
the current pass through the network at significant fractions of
the speed of light, no matter how rapidly we switch the input
voltage, we are essentially saturating the network with the
same signal millions of times before switching. Because of this
speed disparity, a direct model of the hardware network will
not contain discrete time steps, instead it will function more
like a traditional feed-forward neural network, which we will
call the one-hop reservoir, where the input u(t) is influencing
the entire network at time t, but inputs u(s) from times s < t
are not in the network. There is no new information written
to the network before the propagation is complete. Because
of this distinct termination, the network is not allowed to
have cycles or loops. The propagation algorithm is given in
Algorithm 1.

The network is now unable to learn any function requiring
knowledge of previous time steps. The state now depends
solely on the random initial weights, not the history of
previous inputs as required by an ESN—this network is now
an untrained feed-forward neural network.

This comparison is not fair, because a network of memris-
tors does maintain a state, because the weights do get updated.
Unfortunately, a memristor’s state cannot act act as a suitable
substitute for the ESN’s discrete time steps. The state will
work against the readout layer, causing the connection strength
between neurons to “wobble” over time.

By making the ESN have a “wobbling” weights matrix to
simulate the updating conductances of the memristors and
switches, we handicap the readout layer by removing the

Algorithm 1 Feed-forward Reservoir Propagation

1: ▷ Propagate input u(t) over the reservoir defined by W
2: procedure PROPAGATE(W, Win,u(t))
3: v←Win[1;u(t)]
4: o← (0, 0, . . . , 0)T ▷ o holds final value for output
5: for all n ∈ toposort(W) do
6: t := vn

7: for all m ∈ predecessors(n) do
8: t := t+ om ×Wn,m

9: end for
10: on ← f(t) ▷ f is tanh or sigmoid
11: end for
12: return o
13: end procedure

underlying assumption of regression—for a given input x,
there is a function f(x) that we attempt to find. Because f is a
function, each x maps to a unique y. By changing the weights
matrix, we change the x value for a given y,1 and introduce the
chance of a collision. That is, two different histories of input
may result in the same internal state, and the readout layer is
now unable to learn a function to map the state to the desired
output. Another way of looking at this is that the “wobbling”
ESN violates the separation property defined by Maass [10] in
reference to the liquid state machine. The separation property
states that, for two inputs a and b, there should be a filter
F such that if a and b differ anywhere at time t < T , then
F (a) ̸= F (b). The reservoir (or liquid) serves as this filter,
but the wobbling reservoir is no longer appropriate.

VI. EMPIRICAL COMPARISON OF MEMRISTIVE STATE WITH
DISCRETE TIME CONSERVATIVE NETWORKS

By generating a large variety of memristor networks and
feed-forward conservative ESNs that are both discrete-time
and one-hop with a range of reservoir sizes, we can explore
whether they all exhibit similar learning tendencies, and if
not which networks behave most similarly. We generated ten
reservoirs of each learner, with reservoir sizes ranging from 50
to 2000 neurons, trained the reservoir to predict the Mackey-
Glass τ = 17 problem set using the output at time t−1 as input
at time t, and calculated the correlation distance between the
output curve and the expected curve for the next 200 steps.
The correlation distance between two curves represented by
vectors a and b is

dcorr(a,b) = 1− (a− ā) · (b− b̄)

∥a− ā∥2∥b− b̄∥2
. (7)

The symbol ā is the mean value of a, · is the dot product
of vectors, and ∥·∥2 is the euclidean length of a vector. This
particular distance metric was chosen as it better captures the
intent to follow a curve rather than how far apart two curves
happen to be. Before running statistical tests, we throw out
the “failed” learnings. We determine these by calculating the

1That is, at time t1 we have x1 7→ y, but at time t2 we find that x2 7→ y
and x1 ̸7→ y. The function f has changed.

area between the output and expected curves. We consider any
area that exceeds 1010 as a failed learning.

A one-way ANOVA test, where the grouping is the pair
(learner, size), reveals there is a significant difference between
the groups (F24 = 6.62, p < 0.0001). To see where these
differences actually occur, we perform a Student’s t-test be-
tween two learners at each size, and the result of this is in
Table I. Because there are a large number of t-tests conducted,
and a Bonferroni correction is too conservative, the chance
of making a Type-I error rises. Hence we consider more the
“broad strokes” rather than the precise p-values. The first
thing that is clear is that distinguishing between the one-hop
ESN and the memristor is difficult, with only one significant
result out of all the reservoir sizes. This is in contrast to what
occurs between the discrete-step ESN and both other learners,
in particular memristors. We can distinguish the discrete-step
ESN from either of the other learners with good consistency.

These differences become clear when we plot the predicted
curve alongside the actual curves they were intended to match.
The examples in Figure 4 show how each reservoir fares as a
predictor, and makes clear why the memristors and one-hop
ESNs are so difficult to tell apart. The correlation distances
for each prediction are: 0.13638 for the discrete ESN; 1.30299
for the one-hop ESN; and 0.62263 for the memristor reservoir.
The closer the two curves follow one another, the smaller the
correlation distance between them.

VII. MOVING FORWARD

To overcome these hardware limitations, the reservoir de-
signers can make some important alterations, and move the
missing features to external hardware or software. An example
of this would be the “echoer” mentioned earlier. Other options
include an n-step delayed input, where the input size of
the network is made n times larger, and input from times
t−1, t−2, . . . , t−n are also input to the network. This removes
the responsibility of storing past inputs from the network state
to the external input-delay mechanism..

Another potential path forward is that taken by Bürger et
al. [3], in composing a collection of memristive reservoirs
into a “reservoir of reservoirs.” This architecture moves the
concerns of loops and cycles out to a digital reservoir, meaning
the limitations of an electrical circuit no longer apply. It
also means that a potential limitation of large networks is
mitigated. When the same potential difference is spread over
many memristors, there is a smaller potential difference across
each memristor, so the switching is less effective.

Alternatively, instead of general-purpose machine learning,
hardware designers can pursue an approach more like that of
Pershin and Di Ventra [12]. The arrangement of memristors is
no longer random, but carefully chosen to solve a particular
problem, or class of problems. The example they explore is
maze-solving, where by arranging the memristors in a grid
pattern and enabling and disabling certain paths the shortest
path is naturally found by the circuit. This is still a useful
application of memristors, but can no longer solve problems
that cannot be modelled with that particular circuit layout.

TABLE I: Significance levels between distributions of correlation distances for different learners. Stars signify 95%, 99% and
99.9% confidence intervals.

Discrete vs One-hop Discrete vs Memristor One-hop vs Memristor
Size p Sig. p Sig. p Sig.

50 0.0160 * 0.0001 *** 0.3381
100 0.1668 0.0054 ** 0.2224
200 0.0190 * < 0.0001 *** 0.0593
500 0.0440 * < 0.0001 *** 0.0185 *
750 0.0291 * 0.0001 *** 0.1068
1000 0.0022 ** < 0.0001 *** 0.4198
1500 0.0036 ** 0.0003 *** 0.7328
2000 0.0237 * 0.0006 *** 0.3445

0 50 100 150 200
0.6

0.4

0.2

0.0

0.2

(a) Discrete ESN

0 50 100 150 200
0.6

0.4

0.2

0.0

0.2

(b) Onehop ESN

0 50 100 150 200
0.6

0.4

0.2

0.0

0.2

(c) Memristor Reservoir

Fig. 4: The predicted Mackey-Glass curves, blue (dark grey), plotted against the true curves, green (light grey), for each type
of reservoir.

Finally, we must consider alternatives to the reservoir
paradigm. Although the limitations of updating a hardware
reservoir make similarities clear, it obscures many fundamental
differences in the assumptions of their development. Loops,
cycles, and the discrete time steps are all vital features to
the representational power of ESNs and LSMs and need
to be built into the next generation model of neuromorphic
networks. While still under development, in the latest hardware
implementations of reservoir neural networks cycles, loops,
and discrete time steps are present due to intrinsic capacitive
time delays or implemented through external circuitry.

VIII. CONCLUSION

Reservoir neural networks such as echo state networks or
liquid state machines were designed to run in software, which
allows enormous flexibility in, for example, the type and
number of connections between nodes. Hardware variants have
intrinsic limitations because they obey the laws of Physics.
This means a direct translation of reservoir neural networks
onto neuromorphic hardware may suffer from reduced repre-
sentational power compared to their software counterparts.

Potential hardware additions such as the input delayer hint
that the hardware implementation of neural networks is still
viable, but a new, more creative approach may be needed.
Further research is needed to explore how to overcome the
lack of cycles, loops, and discrete time steps in circuits,
and whether there are possible replacements. Other ways to

learn from hardware reservoirs may present themselves with
a different set of restrictions to those of echo state networks
or liquid state machines.

REFERENCES

[1] A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H.
Shieh, M. Aono, A. Z. Stieg, and J. K. Gimzewski,
“Neuromorphic atomic switch networks,” PLoS ONE,
vol. 7, no. 8, pp. 1–8, August 2012.

[2] J. Bürger and C. Teuscher, “Variation-tolerant computing
with memristive reservoirs,” in IEEE/ACM International
Symposium on Nanoscale Architectures, July 2013, pp.
1–6.

[3] J. Bürger, A. Goudarzi, D. Stefanovic, and C. Teuscher,
“Hierarchical composition of memristive networks for
real-time computing,” in Proceedings of the 2015
IEEE/ACM International Symposium on Nanoscale Ar-
chitectures (NANOARCH15). IEEE, July 2015, pp. 33–
38.

[4] M. Čerňanský and M. Makula, “Feed-forward echo
state networks,” in Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., vol. 3, July
2005, pp. 1479–1482.

[5] L. O. Chua, “Memristor – the missing circuit element,”
IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp.
507–519, September 1971.

[6] S. Fostner and S. A. Brown, “Neuromorphic behavior
in percolating nanoparticle films,” Phys. Rev. E, vol. 92,
no. 5, p. 052134, November 2015.

[7] H. Jaeger, “The “echo state” approach to analysing and
training recurrent neural networks,” German National
Research Institute for Computer Science, GMD Report
148, January 2001.

[8] Z. Konkoli and G. Wendin, “On information processing
with networks of nano-scale switching elements,” Inter-
national Journal of Unconventional Computing, vol. 10,
no. 5/6, pp. 405–428, November 2014.

[9] M. Lukoševičius, Neural Networks: Tricks of the Trade:
Second Edition. Springer, 2012, vol. 7700, ch. A
Practical Guide to Applying Echo State Networks, pp.
659–686.

[10] W. Maass, T. Natschläger, and H. Markram, “Real-
time computing without stable states: A new framework
for neural computation based on perturbations.” Neural
Computation, vol. 14, no. 11, pp. 2531 – 2560, November
2002.

[11] D. Monroe, “Neuromorphic computing gets ready for the
(really) big time,” Commun. ACM, vol. 57, no. 6, pp. 13–

15, June 2014.
[12] Y. V. Pershin and M. Di Ventra, “Solving mazes with

memristors: A massively parallel approach,” Phys. Rev.
E, vol. 4, no. 84, p. 046704, March 2011.

[13] A. Sattar, S. Fostner, and S. A. Brown, “Quantized
conductance and switching in percolating nanoparticle
films,” Physical Review Letters, vol. 111, no. 13, p.
136808, June 2013.

[14] H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis,
M. Aono, A. Z. Stieg, and J. K. Gimzewski, “A theo-
retical and experimental study of neuromorphic atomic
switch networks for reservoir computing,” Nanotechnol-
ogy, vol. 24, no. 38, p. 384004, September 2013.

[15] A. Smith, “Simulating percolating superconductors,”
Master’s thesis, University of Canterbury, 2014.

[16] A. Stockdill and K. Neshatian, Restricted Echo State
Networks, ser. LNAI. Cham: Springer International
Publishing, December 2016, vol. 9992, pp. 555–560.

[17] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams, “The missing memristor found,” Nature, vol.
453, no. 7191, pp. 80–83, May 2008.

