What is a number, and what should it be?

Richard Dedekind

Finding an Analogy

Aaron Stockdill

Mateja Jamnik, Daniel Raggi
Peter Cheng, Grecia Garcia Garcia, Holly Sutherland

Gaussian Sum

Gaussian Sum

Gaussian Sum

Gaussian Sum

$$
\sum_{i=1}^{n} i=1+2+\cdots+n
$$

Gaussian Sum

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+\cdots+n \\
& =n+\cdots+2+1
\end{aligned}
$$

Gaussian Sum

Gaussian Sum

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+\cdots+n \\
& =n+\cdots+2+1 \\
& =\frac{1}{2} \times n \times(n+1)
\end{aligned}
$$

Gaussian Sum

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+\cdots+n \\
& =n+\cdots+2+1 \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Gaussian Sum

Why?

Why?

People think differently

Why?

People think differently
Same content, different cognitive features

Why?

People think differently
Same* content, different cognitive features

Why?

People think differently

Same content, different cognitive features
Switch to a more accessible representation

Why?

People think differently
Same content, different cognitive features
Switch to a more accessible representation
Expose conceptual links

Structure Mapping

Structure Maps

Structure Maps

Structure Maps

$$
\begin{aligned}
& \text { structure Maps } \\
& 000^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { structure Maps } \\
& 000^{2}
\end{aligned}
$$

Structure Maps

Structure Maps

Structure Maps

Rules of the Game

Rules

Given statement in first representation

Rules

Given statement in first representation Set of alternative representations

Rules

Given statement in first representation
Set of alternative representations
No available translations

Rules

Given statement in first representation
Set of alternative representations
No available translations
Small/no applicable datasets

Describing a Representation

Representations

Cohesive set of tokens, types, tactics, patterns, and laws

Representations

Cohesive set of tokens, types, tactics, patterns, and laws

Intuitive boundaries (usually)

Representations

Cohesive set of tokens, types, tactics, patterns, and laws

Intuitive boundaries (usually)
Can be combined in complex ways

Representations

Cohesive set of tokens, types, tactics, patterns, and laws

Intuitive boundaries (usually)
Can be combined in complex ways
Need to describe them!

let Algebra = representation

import tokens from real_numerals; import tokens from latin_alphabet;

mode sentential;
rigorous true;
types integer, real, formula, proof;
tokens |, =, >, < where type $=$ integer \rightarrow integer \rightarrow bool;
tokens +, -, ×, \div, ^ where
type $=$ integer $*$ integer \rightarrow integer;
token \sum where

$$
\begin{aligned}
& \text { type }=\text { 'a set } \rightarrow(‘ a \rightarrow \text { integer }) \\
& \rightarrow \text { integer } ;
\end{aligned}
$$

pattern binaryOperation where $\begin{aligned} \text { holes }= & \text { \{integer: } 3, \\ & \text { integer * integer }\end{aligned}$
\rightarrow integer: 1\}, tokens = [=];
laws +associative, +commutative, *associative, *commutative, ...;

$$
\begin{array}{r}
\text { tactic rewrite where laws }=1, \\
\text { patterns }=1 ; \\
\text { tactic calc where laws }=0, \\
\text { patterns }=1 ; \\
\text { tactic induction where laws }=2, \\
\text { patterns }=1 ;
\end{array}
$$

end;

Correspondences

Correspondences

Links between representations

Correspondences

Links between representations
What fill the same role?

Correspondences

Links between representations
What fill the same role?
Problem-independent

Correspondences

$$
\langle q, r, s\rangle
$$

Correspondences

q
r
S

Correspondences

$q \quad$ First representation properties
r
S

Correspondences

q First representation properties
\boldsymbol{r} Second representation properties
S

Correspondences

q First representation properties
\boldsymbol{r} Second representation properties
$S \quad$ Relationship strength

Correspondences

$$
\langle q \quad, \quad r \quad, \quad s\rangle
$$

Correspondences

$$
\langle q \quad, \quad r \quad, \quad s\rangle
$$

type number

Correspondences

$$
\langle q \quad, \quad r \quad, \quad s\rangle
$$

type number
type dot arrangement

Correspondences

$$
\langle q \quad, \quad r \quad, \quad s\rangle
$$

type number
type dot arrangement
0.9

Property Formulae

Formulae

十

Formulae

stack vertically
 00000 00000 -0000 ○○○○ 00000

Formulae

$$
\begin{gathered}
\text { stack vertically } \\
\text { o0000 } \\
00000 \\
00000 \\
00000 \\
00000
\end{gathered}
$$

Formulae

> stack vertically oolooo OOOOO OOOOOO OOOOO
stack horizontally
00000
00000
00000
00000
00000

Formulae

Alternative related properties

Formulae

Alternative related properties
Requires several properties together

Formulae

Alternative related properties
Requires several properties together
Properties should be absent

Formulae

Alternative related properties OR
Requires several properties together
Properties should be absent

Formulae

Alternative related properties OR
Requires several properties together AND Properties should be absent

Formulae

Alternative related properties OR
Requires several properties together AND Properties should be absent NOT

Formulae

Formulae

〈 token + ,

Formulae

< token + ,
tactic stack-horizontal
OR tactic stack-vertical

Formulae

token + ,
tactic stack-horizontal
OR tactic stack-vertical

$$
0.9>
$$

Strength

Strength

< token + ,
tactic stack-horizontal
OR tactic stack-vertical

$$
0.9\rangle
$$

Strength

< token + ,
tactic stack-horizontal
OR tactic stack-vertical

Strength

Measure of suitability

Strength

Measure of suitability
Perfect is 1 , meaningless is 0

Strength

Measure of suitability
Perfect is 1 , meaningless is 0
Any real value in between

Strength

$$
s(r \mid q)=\frac{\operatorname{Pr}(r \mid q)-\operatorname{Pr}(r)}{1-\operatorname{Pr}(r)}
$$

Strength

$$
s(r \mid q)=\frac{\operatorname{Pr}(r \mid q)-\operatorname{Pr}(r)}{1-\operatorname{Pr}(r)}
$$

Proportion of actual change to potential change

Strength

Properties have probability

Strength

Properties have probability
Bayesian prior / Frequentist occurrences

Strength

Properties have probability

Bayesian prior / Frequentist occurrences
Knowing one informs another

Strength

$$
s(r \mid q)=\frac{\operatorname{Pr}(r \mid q)-\operatorname{Pr}(r)}{1-\operatorname{Pr}(r)}
$$

Strength

$$
s(r \mid q)=\frac{\operatorname{Pr}(r \mid q)-\operatorname{Pr}(r)}{1-\operatorname{Pr}(r)}
$$

Proportion of actual change to potential change

Deriving
 Correspondences

Derivation

Derivation

Derivation

Derivation

Derivation

Difficult to think of

Derivation

Difficult to think of
Many correspondences

Derivation

Difficult to think of
Many correspondences
More usually better

Derivation

Difficult to think of
Many correspondences
More usually better

Rules

Rules

$$
\overline{\langle a, a, 1\rangle}
$$

If two properties are identical, they correspond perfectly

Rules

$$
\frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}
$$

Correspondences can be reversed

Rules

$$
\frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}
$$

Correspondences can be reversed

$$
s^{\prime}=s \cdot \frac{\operatorname{Pr}(a)}{1-\operatorname{Pr}(a)} \cdot \frac{1-\operatorname{Pr}(b)}{\operatorname{Pr}(b)}
$$

Rules

$$
\frac{\left\langle a, b, s_{1}\right\rangle \quad\left\langle c, d, s_{2}\right\rangle}{\left\langle c[b / a], d, s_{1} \cdot s_{2}\right\rangle}
$$

Correspondences can be chained together

Rules

$$
\frac{a\{k=v\} \quad b\left\{k=v^{\prime}\right\} \quad\langle a, b, s\rangle}{\left\langle v, v^{\prime}, s\right\rangle}
$$

Attributes of corresponding properties may themselves correspond

Rules

$$
\frac{a\{k=v\} \quad b\left\{k=v^{\prime}\right\} \quad\left\langle v, v^{\prime}, s\right\rangle}{\langle a, b, s\rangle}
$$

Properties with corresponding attributes may themselves correspond

Derivation

Derivation

Derivation

Derivation

\langle token 1 , token dot , 1.0\rangle

Derivation

\langle token 1 , token dot , 1.0\rangle

Derivation

\langle token 1, token dot , 1.0\rangle
 token $1:\{$ type $=$ int $\}$

Derivation

token dot : \{ type = arrangement \}

Derivation

token dot : \{ type = arrangement \}

Derivation

 token $\underbrace{\langle\text { token } 1}_{1}$, token dot 1.0$\rangle$ token dot : \{ type = arrangement \}\langle type int , type arrangement , 1.0\rangle

Domination

Domination

Multiple derivations

Domination

Domination

- •

Domination

Domination

Domination

Domination

Domination

Multiple derivations

Domination

Multiple derivations
More specific rules, or stronger rules, dominate

Domination

Multiple derivations
More specific rules, or stronger rules, dominate

How to order?

Domination

Multiple derivations
More specific rules, or stronger rules, dominate

How to replace?

Domination

Derivation children

Derivation children

Derivation children

Derivation children

Derivation children

Derivation children
Enforce acyclicity (to avoid infinite loops!)

Generalising

Generalising

Recommend other things

Generalising

Recommend other things
Films, books, music

Generalising

Recommend other things
Films, books, music \rightarrow all together

Generalising

Recommend other things
Films, books, music \rightarrow all together
Post-hoc rationalisation

Generalising

Set of structures \mathcal{S}

Generalising

Set of structures \mathcal{S}
Each $S \in \mathcal{S}$ is a tuple $S=(A, \mathcal{R}, \operatorname{Pr})$

Generalising

Set of structures \mathcal{S}
Each $S \in \mathcal{S}$ is a tuple $S=(A, \mathcal{R}, \operatorname{Pr})$
Set A contains atoms

Generalising

Set of structures \mathcal{S}
Each $S \in \mathcal{S}$ is a tuple $S=(A, \mathcal{R}, \operatorname{Pr})$
Set A contains atoms
Set \mathcal{R} contains predicates on $A^{2} \ldots A^{n}$

Generalising

Set of structures \mathcal{S}
Each $S \in \mathcal{S}$ is a tuple $S=(A, \mathcal{R}, \operatorname{Pr})$
Set A contains atoms
Set \mathcal{R} contains predicates on $A^{2} \ldots A^{n}$
Function Pr assigns probabilities to atoms

Generalising

Generalising

$\overline{\langle a, a, 1\rangle}$

Generalising

$$
\overline{\langle a, a, 1\rangle} \quad \frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}
$$

Generalising

Reversal formula earlier

Generalising

Reversal formula earlier
$\overline{\langle a, a, 1\rangle} \frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}<\frac{\left\langle a, b, s_{1}\right\rangle \quad\left\langle c, d, s_{2}\right\rangle}{\left\langle c[b / a], d, s_{1} \cdot s_{2}\right\rangle}$

Generalising

Reversal formula earlier
$\overline{\langle a, a, 1\rangle} \frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}<\frac{\left\langle a, b, s_{1}\right\rangle \quad\left\langle c, d, s_{2}\right\rangle}{\left\langle c[b / a], d, s_{1} \cdot s_{2}\right\rangle}$

$$
\frac{P\left(x_{1}, \ldots, x_{n}\right) \quad P\left(y_{1}, \ldots, y_{n}\right)\left\langle x_{1}, y_{1}, s_{1}\right\rangle \cdots\left\langle x_{k}, y_{k}, s_{k}\right\rangle}{\left\langle x_{k+1}, y_{k+1}, s^{\prime}\right\rangle \cdots\left\langle x_{n}, y_{n}, s^{\prime}\right\rangle}
$$

Generalising

Reversal formula earlier
$\overline{\langle a, a, 1\rangle} \frac{\langle a, b, s\rangle}{\left\langle b, a, s^{\prime}\right\rangle}<\frac{\left\langle a, b, s_{1}\right\rangle \quad\left\langle c, d, s_{2}\right\rangle}{\left\langle c[b / a], d, s_{1} \cdot s_{2}\right\rangle}$

$$
\frac{P\left(x_{1}, \ldots, x_{n}\right) \quad P\left(y_{1}, \ldots, y_{n}\right) \quad\left\langle x_{1}, y_{1}, s_{1}\right\rangle \cdots\left\langle x_{k}, y_{k}, s_{k}\right\rangle}{\left\langle x_{k+1}, y_{k+1}, s^{\prime}\right\rangle \cdots\left\langle x_{n}, y_{n}, s^{\prime}\right\rangle} \underset{\text { Where } s^{\prime}=\frac{1}{n-1} \sum_{i=1}^{k} s_{i}}{\text { When }}
$$

In the rep2rep Framework

rep2rep

rep2rep

rep2rep

rep2rep

rep2rep

rep2rep

Formal
recommendation

rep2rep

rep2rep

rep2rep

Formal
Cognitive
recommendation recommendation

Finding an Analogy

Aaron Stockdill

Mateja Jamnik, Daniel Raggi
Peter Cheng, Grecia Garcia Garcia, Holly Sutherland

